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NV IS Background

Background: Human Disease Network

In the HDN analysis, the concept of network analysis is adopted. One node
corresponds to a disease, and two diseases are connected with a network
edge if they are “interconnected”.

e gene-centric HDN [Goh et al., 2007]
@ phenotypic HDN [Zhou et al., 2014, 2022]
@ clinical outcome HDN [Yang et al., 2022, Mei et al., 2025]

o Two diseases are defined as interconnected if their clinical treatments

and/or outcomes — such as inpatient length-of-stay (LOS), number of
outpatient visits, and treatment costs — are “correlated”.
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Background: Latent Space Model

Our literature review suggests that one family of techniques, which has been
widely adopted and shown as powerful in other contexts [Liu et al., 2024, Zhang

et al., 2024a] but limitedly examined for HDNs, is latent space modeling [Hoff
et al., 2002].

@ Single layer network [Hoff et al., 2002, Ma et al., 2020]
@ Multi-layer networks [Zhang et al., 2020]
@ Time-varying networks [Sarkar and Moore, 2005, Liu et al., 2024]
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Background: Latent Space Model

Our literature review suggests that one family of techniques, which has been
widely adopted and shown as powerful in other contexts [Liu et al., 2024, Zhang

et al., 2024a] but limitedly examined for HDNs, is latent space modeling [Hoff
et al., 2002].

@ Single layer network [Hoff et al., 2002, Ma et al., 2020]
@ Multi-layer networks [Zhang et al., 2020]
@ Time-varying networks [Sarkar and Moore, 2005, Liu et al., 2024]

Limitation: Difficult to analyze the following sensible temporal structure

@ There are time intervals within which network structures remain constant —
they correspond to small and slow changes in disease diagnosis, treatment.

@ Between those intervals, network structures are assumed to change smoothly.
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Introduction

Data Exploration: Motivation
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bRk
Data and Modeling Framework

@ p: number of diseases

@ T number of time periods

@ n: number of subjects

° {yl‘(;)}ie[n],je[p},te[T]: clinical treatment measurement
As noted in the literature and can be seen from Figure 1, the marginal
distributions of disease-specific LOS are highly zero-inflated.

Year 2008 Year 2012 Year 2016 Year 2019

e T——TY

2008 2000 2010 2011 2012 2013 2014 2015 2016 2017 2018 207
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el
Time-varying Latent Space Modeling

@ We adopt a two-part modeling approach for the estimation of network
adjacency matrices [Mei et al., 2025].

_ O\ (@) :
o A — [(Ajk )j,kﬂ ceee (Ajlc )j,kZJ € {0,1}7*P*P: 3 tensor for the
time-varying adjacency matrices.

@ We develop the latent space modeling based on the estimated A.
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el
Time-varying Latent Space Modeling

@ We adopt a two-part modeling approach for the estimation of network
adjacency matrices [Mei et al., 2025].

_ M)* o AON )
o A= {(Ajk )j,k:l EER- (Ajk )j,k_1:| € {0,1}7*PxP: 3 tensor for the
time-varying adjacency matrices.

@ We develop the latent space modeling based on the estimated A.

@ Overall, the model is defined as:

Aﬁ) ~ Bernoulli (P;,?) , logit (P](,?) = @52 = a§t)+a,(:)+ijA(t) 2k,
where logit(z) = loglz/(1 — z)], Pj(,? represents the connection

probability between diseases j and k, and ol is disease j's

J
heterogeneity parameter for period t.
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|dentifiability

Proposition
Suppose that two sets of parameters ({a(t)}thl , {A(t)}thl , Z) and

O O : , iy
{aT }t_l , {AT }t_l ,Zy | satisfy the following conditions:
1. J,Z=2,J,Z; = Z;, where J, = I, — %lplg;

2. Z"Z = pI, and ZTTZT =pl,;

3. At least one of A ’s, t =1,2.--- T, is full rank.

Then,
T T T 4T 6T ) T
1] + 1,007 + ZADZT = a{"1] + 1, + ;A 2],
fort =1,...,T, which implies that there exists an orthonormal matrix O € R"*"

where OTO = OO = I,., such that

ol =a®, 2, =20, A" =0TAYO

fort=1,---,T.
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Methodology
Estimation

The negative log-likelihood is:

Law (Z, @, A) ET: i {A(”@“) +log( (@gt,j))},
k—

t=1j 1

s

As discussed above, we consider the temporal structure with “piecewise constant
+ smoothly varying” properties. To achieve this, we propose a penalty built on the
combination of ¢; and ¢ norms. Following Tibshirani [2014] and other literature,
we refer it to as the Mixed Trend Filter (MTF) penalty, which has the form:

T-1 )
+ H DWA
RN (Cor
5 (|p@al +owal}).

2 F F

where A1, Ao are data-dependent tuning parameters, and D*) € R(T—F)*T s the
discrete difference operator of order k.
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el
Computation

Algorithm 1 Coordinate-Proximal-Projected Gradient Descent for MTF-LSM
Require: A € R7 *PXP; initial estimates: Z(, ctg, Ag; Step Sizes 7z, o, 7 ; tunings:Ap, Ag;
1: while not convergent do
2: fortin 1:7 do 9
AD A 4 2T (A(*) —g (9“))) Z-mAV,0 D(S)A”F
A1)« Prox(AlY) = argming 3[18 — AV + 3 (18— A D[p 418 - AT )
end for
for ¢ in 1:7" do .
o ol + 200 (A0 — 5 (00)) 1, — 103 [P

a't) « Prox(a?) = argming 118 — a® |3 + 3 (I8 — 2=V |1 + |8 - at+D)||1)
end for
ZeZ+m Tl (A(f) s (e(f))) ZA®

QYV® s W

—_

.
i ZeJyZZ—ZWiaW R 502 Z=pl A « W IA® (W)
12: end while
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Conditions and Assumptions

Definition 1. For p, T,r € N, i1, o, us € R4, the feasible parameter space is
defined as:

F =Fp 1 (11, pi2, p13)
= {7’ = [@(1); o). ... @(T)] c RTxpxp .
0" =a®1] +1,aMT +ZAVZT;
Z E RPXT7 ZTZ :pIr»JpZ = Zaa(t) E RP
AD e s, ’6(”

S,ulat:LQa"’ ’T

max

[

S,U/?nt: 172a"' 7T}7
max
where J,, = I, — 21,17, S*** includes all symmetric k x k matrices, and || - [|max
cAalculates the maximum absolute value of entries for a matrix. For the estimator

T = argminyer L(T) and the true parameter T, € F associated with «, and
Z,. Theorem 1 establishes the error bound.
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Statistical Properties of T

Theorem

Assume that o, (A,(f)) >k, t=1,2,---,T, for some constant k > 0.

Further assume that Ay + 32 g p3r < — 5P where b(z) = log(1+ exp(x)),

32u3r M, VT’

M, = W Then, there exist constants cy,co > 0, such that with

probability at least 1— T exp (—c1p) — exp (—c2(2p+ T)),

~ 2
HT ~ T, < OwT +Co(2p +T) + CsT

where positive constants Cy and Cy depend solely on (u1, pa, 3, r), while
positive constant Cs additionally depends on (A1, A2).

@ The term CypT is induced by {a(t)}thl.

@ The second term Cq(2p + T) is induced by {ZA(t)ZT};.
@ The third term C3T is induced by the mixed trend penalty.
April 21, 2025
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Statistical Properties of &

Corollary

Assume that the conditions of Theorem 1 are satisfied and there exists a constant
0 > 0 such that T < ép. Then, there exist constants c1,co > 0, such that with
probability at least 1 — T exp (—c1p) — exp (—ca(2p + T)),

1., . ~ ~
T ||a—a*||§ <C1+CoT™!

where positive constant C, depends solely on (11, p2, 3, 1), while positive
constant Cy additionally depends on (A1, Az2).

@ Even in the worst-case scenario (without any constant-smooth trends), the
penalty does not significantly increase the error.

@ Under general conditions, the penalty may further reduce the optimization
error, although this effect is not considered in the theoretical analysis.
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Statistical Properties of Z

Theorem

Assume that the conditions of Theorem 1 are satisfied and there exists a constant
0 > 0 such that T < 0p. Then, there exist constants ci,ca > 0, such that with
probability at least 1 — T exp (—c1p) — exp (—ca(2p + T)),

min
Ooesrxr

12
Z.0 - ZHF < Cy+C5T '+ Cep!

where positive constants Cy and C5 depend solely on (u1, pa, s, r), while
positive constant Cg additionally depends on (A1, A2).

@ Our approach maintains the same order of complexity as other relevant
models [Ma et al., 2020, Zhang et al., 2020].
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Data generation

We conduct simulations with three network structures and various parameter
settings: p = 100,200, 7 = 15,30,50 and r» = 2,4.

Network 1 Network 2 Network 3
3 . . .-
2 . LA
2 A -
3 v Cluster
T Cluster N * Custert
N, -, N, . o o cusert § Custer2
s LN + cuser Gusaca
1 K- 1 g
& B -
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2 . .
2 —9® 2 -
2 0 2 3 2 3 2
7 b2l z

(b) Temporal trends of « (c) Temporal trends of o« (d) Temporal trends of «
(T = 15) (T = 30) (T = 50)

Figure: Simulated Data Generation
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Alternative methods

@ LSM [Ma et al., 2020]: @) = 1] + 1,7 + ZHOZMOT

@ TDCPD [Zhang et al., 2024c]: ©®) = Z®) diag(31)Z®T

@ LCSC-LSM [Liu et al,, 2024]: ©") = a1 + 1,7 +ZZ7

© KCN-LSM [Zhang et al., 2024b]: ®) = al] + 1,a” + ZMWZ"T
© PLSM [Zhang et al., 2024a]:

-
oW = alg +1,a" + (diag(,B(t))Z) (diag(ﬁ(t))Z>
@ FlexMn [Zhang et al., 2020]: (Does not incorporate any penalty)
0¥ =a®1] +1,aT + ZAWZT

@ Oracle: Assume that the constant segments are known in advance for the
proposed method.
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Evaluation metrics

When evaluating and comparing different methods, we first consider the relative
errors defined as:

2 2
T ||la T |~
D1 HG(t) - Qit) » >t Ha(t) - ait) »
- T e ’ « T N
= ev], S el],

We also consider the special relative error of Z based on the identifiability:

—~ 2
minOESrXr7OOT=IT HZ — Z*OHF

REZ = 3
12l

Finding the optimal O is known as the orthogonal Procrustes problem, which can
be solved by singular value decomposition (SVD). In particular, if we denote the
SVD of Z"Z, by SEV'T, then the optimal O is given by V.ST.
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Simulation Studies
Results: Tables

Table: Simulation results for Network 3, p = 200, T'= 50 and r = 4. In each
cell, mean (sd) based on 100 replicates. The bold and underlined values indicate
the smallest and the second smallest, respectively.

T Method REe REq REz
LSM 0.2133(0.0161)  0.1587(0.0113)  0.1156(0.0072)
TDCPD 0.6141(0.0167) - 0.8716(0.0005)
LCSC-LSM  0.0348(0.0028)  0.0627(0.0019)  0.0194(0.0040)

5o KCN-LSM  0.1502(0.0128)  8.1669(0.1833)  0.0953(0.0062)
PLSM 0.0706(0.0027)  8.1836(0.2248)  0.2781(0.0029)
FlexMn 0.0348(0.0028)  0.0627(0.0019)  0.0018(0.0001)

Proposed 0.0102(0.0004)  0.0253(0.0009) 0.0017(0.0001)
Oracle 0.0100(0.0004) 0.0265(0.0008) 0.0016(0.0001)
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Results: Figures of temporal trends

Time Perod Time Pariod

(a) Network 1, T =15  (b) Network 2, T'=15  (c) Network 3, T =15

Method -~ Flexkn -+ LCSCLSM ~ LSWM — Proposed — Trath Mothod ~ Flexin -~ LCSC-LSM ~ LSM — Proposed — Trah Mathod ~ Flexhin -~ LCSCLSM LS — Proposed — Trth

Time Perios

(d) Network 1, T =50  (e) Network 2, T' = 50 (f) Network 3, T' = 50

Figure: Simulation results: estimation of temporal trends (r = 2 and p = 200).
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Results: Figures of latent spaces

(g) Proposed

(h) Oracle
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Medicare

@ We first retrieve 133 million Medicare inpatient records collected during the
period from January 2008 to December 2019, representing service utilization
of 35 million Medicare beneficiaries.

@ As in the literature, we focus on subjects aged 65 years and above.

@ Following the literature [Wei et al., 2017, Jiang et al., 2018], we extract the
length-of-stay (LOS) information.

@ The final data for analysis is a array containing the LOS measurements for
each subject, each of the 108 diseases, and each of the 12 years.

Adopting the approach developed in Mei et al. [2023] to Medicare inpatient claims
data from 2008 to 2019, we first estimate the 12-year HDN adjacency matrices.
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Analysis of shared latent space
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Analysis of temporal trends
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Analysis using the alternative methods (e.g. LCSC-LSM)
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Analysis using the alternative methods (e.g. LCSC-LSM)
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@ This instability in temporal patterns not only complicates trend
interpretation but also limits the utility of clustering analysis.
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