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Introduction Background

Background: Human Disease Network

In the HDN analysis, the concept of network analysis is adopted. One node
corresponds to a disease, and two diseases are connected with a network
edge if they are “interconnected”.

gene-centric HDN [Goh et al., 2007]
phenotypic HDN [Zhou et al., 2014, 2022]
clinical outcome HDN [Yang et al., 2022, Mei et al., 2025]

Two diseases are defined as interconnected if their clinical treatments
and/or outcomes – such as inpatient length-of-stay (LOS), number of
outpatient visits, and treatment costs – are “correlated”.
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Introduction Background

Background: Latent Space Model

Our literature review suggests that one family of techniques, which has been
widely adopted and shown as powerful in other contexts [Liu et al., 2024, Zhang
et al., 2024a] but limitedly examined for HDNs, is latent space modeling [Hoff
et al., 2002].

Single layer network [Hoff et al., 2002, Ma et al., 2020]

Multi-layer networks [Zhang et al., 2020]

Time-varying networks [Sarkar and Moore, 2005, Liu et al., 2024]

Limitation: Difficult to analyze the following sensible temporal structure

There are time intervals within which network structures remain constant –
they correspond to small and slow changes in disease diagnosis, treatment.

Between those intervals, network structures are assumed to change smoothly.
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Introduction Motivation

Data Exploration: Motivation

Figure: Pairwise interconnections: Pearson correlation
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Method Methodology

Data and Modeling Framework

p: number of diseases
T : number of time periods
n: number of subjects
{y(t)ij }i∈[n],j∈[p],t∈[T ]: clinical treatment measurement

As noted in the literature and can be seen from Figure 1, the marginal
distributions of disease-specific LOS are highly zero-inflated.

Figure: (Top) Joint and marginal distributions of LOS for Essential Hypertension
and Chronic Obstructive Pulmonary Disease across four different years; (Bottom)
Linear regression slopes.
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Method Methodology

Time-varying Latent Space Modeling

We adopt a two-part modeling approach for the estimation of network
adjacency matrices [Mei et al., 2025].

A =

[(
A

(1)
jk

)p
j,k=1

; · · · ;
(
A

(T )
jk

)p
j,k=1

]
∈ {0, 1}T×p×p: a tensor for the

time-varying adjacency matrices.

We develop the latent space modeling based on the estimated A.

Overall, the model is defined as:

A
(t)
jk ∼ Bernoulli

(
P

(t)
jk

)
, logit

(
P

(t)
jk

)
:= Θ

(t)
jk = α

(t)
j +α

(t)
k +z⊤

j Λ
(t)zk,

where logit(x) = log[x/(1− x)], P (t)
jk represents the connection

probability between diseases j and k, and α
(t)
j is disease j’s

heterogeneity parameter for period t.
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Method Methodology

Identifiability

Proposition

Suppose that two sets of parameters
({

α(t)
}T
t=1

,
{
Λ(t)

}T
t=1

,Z
)

and({
α

(t)
†

}T

t=1
,
{
Λ

(t)
†

}T

t=1
,Z†

)
satisfy the following conditions:

1. JpZ = Z,JpZ† = Z†, where Jp = Ip − 1
p1p1

⊤
p ;

2. Z⊤Z = pIr and Z⊤
† Z† = pIr;

3. At least one of Λ(t) ’s, t = 1, 2, · · · , T , is full rank.
Then,

α(t)1⊤
p + 1pα

(t)⊤ +ZΛ(t)Z⊤ = α
(t)
† 1⊤

p + 1pα
(t)⊤
† +Z†Λ

(t)
† Z⊤

† ,

for t = 1, . . . , T , which implies that there exists an orthonormal matrix O ∈ Rr×r

where O⊤O = OO⊤ = Ir, such that

α
(t)
† = α(t),Z† = ZO,Λ

(t)
† = O⊤Λ(t)O

for t = 1, · · · , T .
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Method Methodology

Estimation

The negative log-likelihood is:

LNLL (Z,α,Λ) = −
T∑

t=1

p∑
j,k=1

{
A

(t)
jkΘ

(t)
jk + log

(
1− σ

(
Θ

(t)
jk

))}
,

As discussed above, we consider the temporal structure with “piecewise constant
+ smoothly varying” properties. To achieve this, we propose a penalty built on the
combination of ℓ1 and ℓ2 norms. Following Tibshirani [2014] and other literature,
we refer it to as the Mixed Trend Filter (MTF) penalty, which has the form:

Q (α,Λ) =λ1

(∥∥∥D(1)α
∥∥∥
ℓ1
+

T−1∑
t=1

∥∥∥∥(D(1)Λ
)(t)∥∥∥∥

F

)

+
λ2

2

(∥∥∥D(3)α
∥∥∥2
F
+
∥∥∥D(3)Λ

∥∥∥2
F

)
,

where λ1, λ2 are data-dependent tuning parameters, and D(k) ∈ R(T−k)×T is the
discrete difference operator of order k.
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Method Methodology

Computation
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Method Statistical Properties

Conditions and Assumptions

Definition 1. For p, T, r ∈ N, µ1, µ2, µ3 ∈ R+, the feasible parameter space is
defined as:

F =Fp,T,r (µ1, µ2, µ3)

=
{
T =

[
Θ(1);Θ(2); · · · ;Θ(T )

]
∈ RT×p×p :

Θ(t) = α(t)1⊤
p + 1pα

(t)⊤ +ZΛ(t)Z⊤;

Z ∈ Rp×r,Z⊤Z = pIr,JpZ = Z,α(t) ∈ Rp

Λ(t) ∈ Sr×r,
∥∥∥Θ(t)

∥∥∥
max

≤ µ1, t = 1, 2, · · · , T

∥α∥max ≤ µ2,
∥∥∥Λ(t)

∥∥∥
max

≤ µ3, t = 1, 2, · · · , T
}
,

where Jp = Ip − 1
p1p1

⊤
p ,Sk×k includes all symmetric k× k matrices, and ∥ · ∥max

calculates the maximum absolute value of entries for a matrix. For the estimator
T̂ = argminT ∈F L(T ) and the true parameter T⋆ ∈ F associated with α⋆ and
Z⋆. Theorem 1 establishes the error bound.

Guojun Zhu (UCAS) MTF-LSM April 21, 2025 15 / 35



Method Statistical Properties

Statistical Properties of T̂

Theorem

Assume that σmin

(
Λ

(t)
⋆

)
≥ κ, t = 1, 2, · · · , T , for some constant κ > 0.

Further assume that λ1 +32λ2µ3r ≤ κ2p

32µ3rMµ1

√
T

, where b(x) = log(1+ exp(x)),

Mµ1
= 2

min|v|<µ1
b′′(v) . Then, there exist constants c1, c2 > 0, such that with

probability at least 1− T exp (−c1p)− exp (−c2(2p+ T )),∥∥∥T̂ − T⋆
∥∥∥2
F
≤ C1pT + C2(2p+ T ) + C3T

where positive constants C1 and C2 depend solely on (µ1, µ2, µ3, r), while
positive constant C3 additionally depends on (λ1, λ2).

The term C1pT is induced by
{
α(t)

}T
t=1

.

The second term C2(2p+ T ) is induced by
{
ZΛ(t)Z⊤}T

t=1
.

The third term C3T is induced by the mixed trend penalty.
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Method Statistical Properties

Statistical Properties of α̂

Corollary

Assume that the conditions of Theorem 1 are satisfied and there exists a constant
δ > 0 such that T ≤ δp. Then, there exist constants c1, c2 > 0, such that with
probability at least 1− T exp (−c1p)− exp (−c2(2p+ T )),

1

T
∥α̂−α⋆∥2F ≤ C̃1 + C̃2T

−1

where positive constant C̃1 depends solely on (µ1, µ2, µ3, r), while positive
constant C̃2 additionally depends on (λ1, λ2).

Even in the worst-case scenario (without any constant-smooth trends), the
penalty does not significantly increase the error.

Under general conditions, the penalty may further reduce the optimization
error, although this effect is not considered in the theoretical analysis.
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Method Statistical Properties

Statistical Properties of Ẑ

Theorem
Assume that the conditions of Theorem 1 are satisfied and there exists a constant
δ > 0 such that T ≤ δp. Then, there exist constants c1, c2 > 0, such that with
probability at least 1− T exp (−c1p)− exp (−c2(2p+ T )),

min
O∈Sr×r

∥∥∥Z⋆O − Ẑ
∥∥∥2
F
≤ C4 + C5T

−1 + C6p
−1

where positive constants C4 and C5 depend solely on (µ1, µ2, µ3, r), while
positive constant C6 additionally depends on (λ1, λ2).

Our approach maintains the same order of complexity as other relevant
models [Ma et al., 2020, Zhang et al., 2020].
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Experiments Simulation Studies

Data generation

We conduct simulations with three network structures and various parameter
settings: p = 100, 200, T = 15, 30, 50 and r = 2, 4.

(a) Latent space Z under different network structures (r = 2)

(b) Temporal trends of α
(T = 15)

(c) Temporal trends of α
(T = 30)

(d) Temporal trends of α
(T = 50)

Figure: Simulated Data Generation
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Experiments Simulation Studies

Alternative methods

LSM [Ma et al., 2020]: Θ(t) = α(t)1⊤
p + 1pα

(t)⊤ +Z(t)Z(t)⊤

TDCPD [Zhang et al., 2024c]: Θ(t) = Z(t) diag(β(t))Z(t)⊤

LCSC-LSM [Liu et al., 2024]: Θ(t) = α(t)1⊤
p + 1pα

(t)⊤ +ZZ⊤

KCN-LSM [Zhang et al., 2024b]: Θ(t) = α1⊤
p + 1pα

⊤ +Z(t)Z(t)⊤

PLSM [Zhang et al., 2024a]:

Θ(t) = α1⊤
p + 1pα

⊤ +
(
diag(β(t))Z

)(
diag(β(t))Z

)⊤
FlexMn [Zhang et al., 2020]: (Does not incorporate any penalty)

Θ(t) = α(t)1⊤
p + 1pα

(t)⊤ +ZΛ(t)Z⊤

Oracle: Assume that the constant segments are known in advance for the
proposed method.
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Experiments Simulation Studies

Evaluation metrics

When evaluating and comparing different methods, we first consider the relative
errors defined as:

REΘ :=

∑T
t=1

∥∥∥Θ̂(t) −Θ
(t)
⋆

∥∥∥2
F∑T

t=1

∥∥∥Θ(t)
⋆

∥∥∥2
F

, REα :=

∑T
t=1

∥∥∥α̂(t) −α
(t)
⋆

∥∥∥2
F∑T

t=1

∥∥∥α(t)
⋆

∥∥∥2
F

.

We also consider the special relative error of Z based on the identifiability:

REZ :=
minO∈Sr×r,OO⊤=Ir

∥∥∥Ẑ −Z⋆O
∥∥∥2
F

∥Z⋆∥2F
.

Finding the optimal O is known as the orthogonal Procrustes problem, which can
be solved by singular value decomposition (SVD). In particular, if we denote the
SVD of Ẑ⊤Z⋆ by SΣV ⊤, then the optimal O is given by V S⊤.
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Experiments Simulation Studies

Results: Tables

Table: Simulation results for Network 3, p = 200, T = 50 and r = 4. In each
cell, mean (sd) based on 100 replicates. The bold and underlined values indicate
the smallest and the second smallest, respectively.

T Method REΘ REα REZ

50

LSM 0.2133(0.0161) 0.1587(0.0113) 0.1156(0.0072)
TDCPD 0.6141(0.0167) - 0.8716(0.0005)
LCSC-LSM 0.0348(0.0028) 0.0627(0.0019) 0.0194(0.0040)
KCN-LSM 0.1502(0.0128) 8.1669(0.1833) 0.0953(0.0062)
PLSM 0.0706(0.0027) 8.1836(0.2248) 0.2781(0.0029)
FlexMn 0.0348(0.0028) 0.0627(0.0019) 0.0018(0.0001)
Proposed 0.0102(0.0004) 0.0253(0.0009) 0.0017(0.0001)
Oracle 0.0100(0.0004) 0.0265(0.0008) 0.0016(0.0001)
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Experiments Simulation Studies

Results: Figures of temporal trends

(a) Network 1, T = 15 (b) Network 2, T = 15 (c) Network 3, T = 15

(d) Network 1, T = 50 (e) Network 2, T = 50 (f) Network 3, T = 50

Figure: Simulation results: estimation of temporal trends (r = 2 and p = 200).
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Experiments Simulation Studies

Results: Figures of latent spaces

(a) LSM (b) TDCPD (c) KCN-LSM

(d) LCSC-LSM (e) PLSM (f) FlexMn

(g) Proposed (h) Oracle (i) True
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Experiments Real Data Analysis

Medicare

We first retrieve 133 million Medicare inpatient records collected during the
period from January 2008 to December 2019, representing service utilization
of 35 million Medicare beneficiaries.

As in the literature, we focus on subjects aged 65 years and above.

Following the literature [Wei et al., 2017, Jiang et al., 2018], we extract the
length-of-stay (LOS) information.

The final data for analysis is a array containing the LOS measurements for
each subject, each of the 108 diseases, and each of the 12 years.

Adopting the approach developed in Mei et al. [2023] to Medicare inpatient claims
data from 2008 to 2019, we first estimate the 12-year HDN adjacency matrices.
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Experiments Real Data Analysis

Analysis of shared latent space

Figure: Clustering result of latent space (r = 2)
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Experiments Real Data Analysis

Analysis of temporal trends

(a) Trends of alpha v.s. degree for se-
lected nodes

(b) Clustering result of {α(t)}Tt=1 trends
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Experiments Real Data Analysis

Analysis using the alternative methods (e.g. LCSC-LSM)

Figure: Clustering result of latent space (r = 2) by LCSC-LSM
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Experiments Real Data Analysis

Analysis using the alternative methods (e.g. LCSC-LSM)

(a) Trends of alpha v.s. degree for se-
lected nodes by LCSC-LSM

(b) Clustering result of {α(t)}Tt=1 trends
by LCSC-LSM

This instability in temporal patterns not only complicates trend
interpretation but also limits the utility of clustering analysis.
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Experiments Real Data Analysis

THANKS!

Guojun Zhu (UCAS) MTF-LSM April 21, 2025 32 / 35



Experiments Real Data Analysis
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