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Abstract

Multi-source generative models have gained
significant attention due to their ability to
capture complex data distributions across di-
verse domains. However, existing approaches
often struggle with limitations such as neg-
ative transfer and an over-reliance on large
pre-trained models. To address these chal-
lenges, we propose a novel method that effec-
tively handles scenarios with outlier source
domains, while making weaker assumptions
about the data, thus ensuring broader appli-
cability. Our approach enhances robustness
and efficiency, supported by rigorous the-
oretical analysis, including non-asymptotic
error bounds and asymptotic guarantees.
In the experiments, we validate our meth-
ods through numerical simulations and real-
world data experiments, showcasing their
practical effectiveness and adaptability.

1 INTRODUCTION

A fundamental problem in statistics and machine
learning is modeling the relationship between a re-
sponse Y and a covariate X. Regression models,
which estimate the conditional mean or median of
Y given X, are commonly used for this task. How-
ever, when the conditional distribution is multimodal
or asymmetric, these methods fall short in capturing
the full complexity of the relationship between Y and
X. To gain a complete understanding, it is necessary
to model the entire conditional distribution, a task at
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which conditional generative models excel (Zhou et al.,
2023; Liu et al., 2021), particularly when based on
well-established architectures like Generative Adver-
sarial Networks (GAN) (Goodfellow et al., 2014) and
Wasserstein GAN (WGAN) (Arjovsky et al., 2017).
Conditional generative models also play a central role
in many important areas, including natural language
processing, computer vision, and biomedical applica-
tions, where deeper insights into data distributions en-
able more flexible and informed decision-making.

In real-world applications of conditional generative
models, beyond the target dataset of interest, data
is also collected from multi-source domains that might
differ from the target domain. For example, in biomed-
ical studies, patient data can be sourced from differ-
ent hospitals or regions, while in financial modeling,
market conditions may vary across different time peri-
ods. Pooling these datasets together without account-
ing for domain differences can lead to suboptimal per-
formance. Transfer learning has emerged as a pow-
erful approach to handle such domain discrepancies
by enabling knowledge transfer from multi-source do-
mains to the target domain, which has gained increas-
ing attention across various fields (Tian et al., 2023;
He et al., 2024).

While transfer learning has been extensively studied
for a wide range of models, including high-dimensional
linear models (Bastani, 2021; Li et al., 2022), general-
ized linear models (Tian and Feng, 2023), functional
regression Lin and Reimherr (2022), semi-supervised
classification (Zhou et al., 2024) and and basis-type
models (Cai and Pu, 2024), applying it to conditional
generative models poses unique challenges. Unlike
parametric or semi-parametric models, where the com-
mon approach is to directly transfer parameters, con-
ditional generative models are non-parametric and re-
quire a different method. Besides, they capture entire
distribution rather than just mean or median, making
it crucial to characterize the bias between the empiri-
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cal distribution and the true distribution with the help
of reliable source domains.

While multi-source transfer learning for conditional
generative models has gained attention, existing ap-
proaches that rely on fine-tuning pre-trained models
face several limitations. One major issue is that these
methods often over-rely on the large-scale pre-trained
models, such as those used in image generation tasks
like StyleGAN, which was trained on massive datasets
like Flickr-Faces-HQ (Karras et al., 2019). For tra-
ditional datasets, such as tabular medical data, such
pre-trained models simply do not exist. This makes
the application of these methods impractical in many
real-world tasks. Moreover, fine-tuning pre-trained
models introduces theoretical challenges, as the com-
plex adjustments required to align the generator and
discriminator make it difficult to derive rigorous the-
oretical guarantees (Han et al., 2021). Additionally,
pre-trained models are often praised for their strong
generalization capabilities, which can make negative
transfer, where the model’s performance degrades due
to irrelevant or misleading information from source do-
mains, a less frequently discussed issue. However, their
out-of-distribution generalization still falls short, high-
lighting a robustness gap (Harun et al., 2024).

These gaps motivate the need for novel method that
do not rely on pre-trained models. Our approach seeks
to address this by developing transfer learning frame-
works for conditional generative models that are more
robust, broadly applicable, and theoretically sound.
We specifically consider settings where not all source
domains are assumed to have a strong similarity with
the target domain, allowing for the presence of out-
lier source domains. Additionally, our method handles
high-dimensional covariates X and response variables
Y , without imposing strict assumptions. While these
factors present significant challenges, developing such
a method would lead to a framework that is more gen-
eral and widely applicable.

To address these challenges, we propose a novel
method that leverages low-dimensional domain-
invariant representations to transfer knowledge effec-
tively across multiple reliable source domains, even
in the presence of outlier source domains. Our ap-
proach ensures that the conditional generative model
remains both robust and efficient by using a criterion
to select reliable source domains. We investigate both
cases where the reliable source domains are known and
unknown, providing a comprehensive solution to this
problem.

Our contributions can be summarized as follows:

• Considering more challenging data settings, we
propose a novel algorithm to learn the conditional

generator, even in the presence of outlier source
domains.

• We fill a theoretical gap by deriving non-
asymptotic error upper bounds and asymptotic
properties for the algorithm. This advances the
theoretical understanding of both single-source
and multi-source conditional generative models.

• Our method outperforms other approaches in
both numerical simulations and real-world image
data experiments.

Notation. For a vector u, ∥u∥1, ∥u∥2 stands for its
ℓ1-norm and ℓ2-norm, respectively. For a function ψ :
X → R, ∥ψ∥∞ is defined to be maxx∈X |ψ(x)|. For two
positive real sequences {an}∞n=1 and {bn}∞n=1, an ≲ bn
means there exists a universal constant C > 0 such
that an ≤ Cbn for all n. For any N ∈ N+, [N ] is
defined to be {1, . . . , N}. The notation O is the ‘big-
O’ notation. ⟨·, ·⟩F is the Frobenius dot product. E is
the expectation taken over all randomness.

2 RELATED WORK

Here we give a review of related work in the literature.

Theoretical Insights for GAN. Early theoretical
work by Liang (2021) critically analyzed how well
GAN learn distributions, laying a foundation for per-
formance analysis. Chen et al. (2020) further provided
important statistical guarantees for adversarial train-
ing. Huang et al. (2022) analyzed approximation er-
ror in GAN and its impact on learning. Building on
this, Liu et al. (2021) explored the wasserstein genera-
tive learning approach, improving GAN applicability.
Zhou et al. (2023) developed a conditional sampling
method using KL divergence, offering insights into
weak convergence. Expanding on wasserstein method,
Song et al. (2023) introduced Wasserstein Generative
Regression, showing the versatility of GAN in regres-
sion problem. Besides, Tan et al. (2024) proposed an
adaptive generator architecture to enhance scalability,
while Suh and Cheng (2024) provided a broad overview
of GAN developments. However, none of these works
address the theoretical challenges of multi-source con-
ditional generative models. Our approach fills this gap
by offering a comprehensive theoretical framework for
multi-source GAN.

Domain adaptation. Domain adaptation tackles the
distribution shift between source and target, often re-
lying on representation-based methods. Asymmetric
approaches transform the features of the source do-
main to match those of the target domain (Hoffman
et al., 2014; Kandemir, 2015; Courty et al., 2017),
while symmetric methods project both domains into
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a shared latent space, aligning their distributions. No-
table examples include DeepJDOT (Damodaran et al.,
2018) and WDGRL (Shen et al., 2018), both using
optimal transport to achieve domain alignment. De-
spite their effectiveness, these methods have not been
applied to conditional generative models. Our work
is the first to extend optimal transport techniques to
multi-source conditional generative modeling.

Few-shot Generative Model. Few-shot genera-
tive models have shown promise in generating high-
quality images from limited data using pre-trained
models. Wang et al. (2018) introduced GAN trans-
fer techniques, while Wang et al. (2020) presented
MineGAN, which mines relevant knowledge from pre-
trained models to generate images with few samples.
Li et al. (2020) proposed elastic weight consolidation
to retain critical information during model adapta-
tion, and Zhao et al. (2022) offered a framework for
few-shot generation methods, maximizing mutual in-
formation to preserve diversity. Moreover, Tian and
Shen (2024) explored diffusion models and introduced
a shared embedding conditioning mechanism. How-
ever, their knowledge transfer approach primarily fo-
cuses on extracting source-shared information during
pre-training, without any target domain interaction.
While these methods achieve practical success, they
heavily rely on large-scale pre-training, limiting their
applicability to rare datasets. Our approach eliminates
the need for pre-trained models, enabling more flexible
and robust multi-source transfer.

3 PROBLEM SET-UP

Suppose there are T sources in total, and we have

collected nt i.i.d. pairs
{
x
(t)
i ,y

(t)
i

}nt

i=1
from the t-th

source, where x
(t)
i ∈ X ⊂ Rd is drawn according to dis-

tribution P
(t)
X over X , and then y

(t)
i ∈ Y ⊂ Rq is drawn

according to the conditional distribution P
(t)

Y |X=x
(t)
i

,

t ∈ [T ]. Besides, we also have collected n0 i.i.d. pairs{
x
(0)
i ,y

(0)
i

}n0

i=1
from the target. There exists a subset

of reliable sources S ⊆ [T ], such that for all t ∈ S, we
assume a low-dimensional subspace Z ⊂ Rr, r << d,
and a common nonlinear mapping R : X 7→ Z that is
shared across different domains, which has the prop-
erties described in the following part.

Similarity Measure. We denote z
(t)
i = R

(
x
(t)
i

)
,

which follows P
(t)
Z . The low-dimensional representa-

tion z
(t)
i retains all the necessary information for learn-

ing the conditional distribution of y
(t)
i . Besides, to the

best of our knowledge, this low-dimensional represen-
tation is generally not unique (Li, 2018). Our goal is to

Figure 1: A simple visualization of our setting

learn domain-invariant representations that not only
facilitate the learning of the conditional distribution
but also reduce the distribution discrepancy between
the source and target domains. However, in the pro-
cess of reducing joint distribution differences, R may
degenerate. Therefore, we are more concerned with
the alignment of conditional distributions. We next
define a new similarity measure between the source
and target domains in terms of the integral probabil-
ity metric(IPM) (Müller, 1997), in the sense that

dF1
B

(
P

(t)
Y |Z , P

(0)
Y |Z

)
= sup

f∈F1
B

{
E
P

(t)

Y |Z
f(y))− E

P
(0)

Y |Z
f(y))

}
,

where F1
B is the uniformly bounded 1-Lipschitz func-

tion class,

F1
B = {f : Rq 7→ R, |f (u)− f (v)| ≤ ∥u− v∥2 ,

u,v ∈ Rq and ∥f∥∞ ≤ B} .
(1)

We define the source domain as reliable if the similar-
ity measure between the source and target domains is
sufficiently small in expectation. Specifically, for some
h > 0, we require:

∀t ∈ S,E
P

(t)
Z

dF1
B

(
P

(t)
Y |Z , P

(0)
Y |Z

)
≤ h. (2)

To precisely determine how small h must be for
the source to be considered reliable, we set h =

O
(
max

{
n−1/(r+q), n

−1/r
0

})
, where n =

∑
t∈S∪{0} nt.

It ensures the optimal convergence rate is achieved,
making the source reliable.

After representation learning, we are interested in find-
ing a function G : Rm × Z 7→ Y such that the condi-
tional distribution of G(η, Z) given Z = z equals the
conditional distribution of Y given Z = z in the tar-
get domain. Since η ∼ Pη is independent of Z, this is
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equivalent to finding a G such that

G(η, z) ∼ P (0)
Y |Z=z, z ∈ Z. (3)

Because of this property, we shall refer to G as a con-
ditional generator. The existence of such a G is guar-
anteed by the noise-outsourcing lemma (Theorem 5.10
in Kallenberg (1997)). For ease of reference, we state
it here with a slight modification.

Lemma. (Noise-outsourcing lemma). Suppose Y is
a standard Borel space. Then there exist a random
vector η ∼ N (0, Im) for a given m ≥ 1 and a Borel-
measurable function G : Rm × Z → Y such that η is
independent of Z and

(Z, Y ) = (Z,G(η, Z)) almost surely. (4)

The noise distribution Pη is taken to be N (0, Im). Be-
cause η and X are independent, a G satisfies formula
(3) if and only if it also satisfies formula (4). Therefore,
to construct the conditional generator, we can find a G
such that the joint distribution of (Z,G(η, Z)) matches
the joint distribution of (Z, Y ). This is the basis of the
proposed generative approach described below.

Finally, we review the core idea of reliable source do-
mains. In terms of S, property (2) naturally holds

when P
(t)
Y |Z = P

(0)
Y |Z , which is a relatively strong as-

sumption of many works(Fernando et al., 2013; Long
et al., 2014; Gong et al., 2016). For clarity, we provide
Figure 1 as a visualization of the case where T = 3
and |S| = 2. To better introduce the case where the
reliable sources subset S is unknown, we first assume
in Section 4 that the subset S is known. The case that
S is unknown will be dealt with in Section 5.

4 ORACLE TRANSFER-WGAN

In this section, we assume that S is known. In prac-
tice, we use neural networks, denoted as Ĝ and R̂,
to approximate the functions G and R, respectively.

We denote ẑ
(t)
i = R̂

(
x
(t)
i

)
, which is drawn from the

distribution P
(t)

Ẑ
. We consider aggregating the target

domain with all reliable source domains in S, pooling
their samples for training. This approach can reduce
the learning bias of the conditional generative model.
However, it introduces a new problem: we are actually
approximating a mixture distribution, given by1

PẐ,Y =
∑

t∈S∪{0}

nt
n
P

(t)

Ẑ,Y
.

1For convenience, we denote that any distribution no-
tation without the domain index (t) refers to a mixture
distribution.

The metric we use to compare the model performance
with the ground truth is the integral probability met-

ric(IPM): dF1
B

(
PẐ,Ĝ, P

(0)

Ẑ,Y

)
2. Using the mixture dis-

tribution, we can decompose this IPM distance into

learning bias dF1
B

(
PẐ,Ĝ, PẐ,Y

)
and transfer bias

dF1
B

(
PẐ,Y , P

(0)

Ẑ,Y

)
. Transfer learning provides a way

to address the curse of dimensionality in learning bias
by utilizing data from multiple sources, but it unex-
pectedly introduces transfer bias. Therefore, our ob-
jective is to balance learning bias and transfer bias
while taking advantage of the properties of domain-
invariant representations.

Building on the work of (Liu et al., 2021), we adopt
the WGAN architecture which formulates the training
process as a min-max optimization problem. Specifi-
cally, the generator aims to minimize the Wasserstein
distance between the generated and real data distri-
butions, while the discriminator attempts to maximize
it. However, since it relies on min-max optimization,
it is prone to instability during training. Alternating
the training of R̂ and Ĝ simultaneously tends to ex-
acerbate this instability in practice. To enhance the
stability of WGAN training, we split the process into
two stages, as motivated by (Wang et al., 2024). In the
first stage, the primary objective is to identify domain-
invariant representations, with regularization applied
to minimize distributional differences. In the second
stage, using only these identified representations, we
conduct a refined estimation.

Stage 1. To improve the stability of the dis-

criminator’s training, this stage uses (x
(t)
i ,y

(t)
i ) as

the input samples for the discriminator. We

have dF1
B

(
PX,Ĝ, PX,Y

)
≤ W1

(
PX,Ĝ, PX,Y

)
, where

W1 is the 1-Wasserstein distance, the Kantorovich-
Rubinstein theorem shows that the dual form of the
1-Wasserstein distance can be written as a form of in-
tegral probability metric(IPM) (Villani et al., 2009),

W1

(
PX,Ĝ, PX,Y

)
= sup

D∈F1
Lip

{
EPXPη

D(X,G(η,R(X)))

−EPX,Y
D(X,Y )

}
,

F1
Lip =

{
f : Rd+q → R,

|f(u)− f(v)|
∥u− v∥2

≤ 1,∀u,v
}
.

Thus, finding the conditional generator and the repre-
sentation can be formulated as a minimax problem,

argmin
G,R

argmax
D∈F1

Lip

L1(R,G,D;S),

which we incorporate regularization into the objec-
tive function, based on the original form of the 1-

2We omit the argument Ĝ(η, Ẑ) and refer to it as Ĝ.
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Wasserstein distance between the source domains and
the target domain.

L1(R,G,D;S) = EPXPη
D(X,G(η,R(X)))

− EPX,Y
D(X,Y )

+
∑

t∈S

λt inf
γ

∫
∥(R(X(t)), Y (t))− (R(X(0)), Y (0))∥1dγ,

where λt represents weights for different source do-

mains, γ ∈ Π
(
P

(t)
X,Y , P

(0)
X,Y

)
describes the space of

joint probability distributions with marginals P
(t)
X,Y

and P
(0)
X,Y . We avoid using the dual form for regular-

ization because we do not want to introduce additional
neural networks.

Let η
(t)
i be independently generated from Pη. The em-

pirical version of L1(R,G,D;S) is

L̂1(R,G,D;S) =
1

n




nt∑

t∈S∪{0}
i=1

D
(
x
(t)
i , G

(
ηi, R

(
x
(t)
i

)))

−D
(
x
(t)
i ,y

(t)
i

)]
+
∑

t∈S

λt min
γ∈Π(Pnt

X,Y ,P
n0
X,Y )

〈
γ,C

(t)
R

〉
F
,

where Pnt

X,Y , P
n0

X,Y are the empirical distributions and

C
(t)
R = (C

(t)
R,ij)

nt,n0

i,j=1 is a cost matrix ∈ Rnt×n0 ,

C
(t)
R,ij = ∥(R(x

(t)
i ),y

(t)
i )− (R(x

(0)
j ),y

(0)
j )∥1.

Although this avoids introducing additional neural
networks, it still requires solving an optimization prob-
lem with γ. Efficient computational schemes have been
proposed with stochastic versions using the dual for-
mulation of the problem Genevay et al. (2016); Seguy
et al. (2017), allowing for the tackling of small to
medium-sized problems.

We use a feedforward neural network Gθ1
with param-

eter θ1 for estimating the conditional generator G in
Stage 1, a second network Dϕ1

with parameter ϕ1 for
estimating the discriminator D in Stage 1 and a third
network Rω with parameter ω for estimating the rep-
resentation R. We estimate θ1, ϕ1 and ω by solving
the minimax problem,

(ω̂, θ̂1, ϕ̂1) = argmin
ω,θ1

argmax
ϕ1

L̂1

(
Rω, Gθ1

, Dϕ1
;S
)
.

The estimated representation is R̂ = Rω̂ which will be
used in Stage 2. At this stage, the estimated Gθ1 and
Dϕ1

are not the final results.

Stage 2. To further refine estimation, network re-
training is conducted using the identified representa-

tion R̂. This stage uses (R̂(x
(t)
i ),y

(t)
i ) as the input

samples for the discriminator which is different from
the stage 1. We consider the minimax problem with
no regularization:

argmin
G

argmax
D∈F1

Lip

L2(G,D;S),

where

L2(G,D;S) =EPXPηD(R̂(X), G(η, R̂(X)))

− EPX,Y
D(R̂(X), Y ).

The empirical version of L2(G,D;S) is

L̂2(G,D;S) =
1

n




nt∑

t∈S∪{0}
i=1

D
(
R̂(x

(t)
i ), G

(
ηi, R̂

(
x
(t)
i

)))

−D
(
R̂(x

(t)
i ),y

(t)
i

)]
.

We use a feedforward neural network Gθ with param-
eter θ for estimating the conditional generator G, a
second network Dϕ with parameter ϕ for estimating
the discriminator D. We estimate θ, ϕ by solving the
minimax problem,

(θ̂, ϕ̂) = argmin
θ

argmax
ϕ

L̂2 (Gθ, Dϕ;S) .

The estimated conditional generator and discrimina-
tor are Ĝ = Gθ̂, D̂ = Dϕ̂. Due to space limitations,
the detailed algorithm implementation and the non-
asymptotic error bound can be found in the Ap-
pendix.

Remark. As illustrated in the Appendix, compared
to the results in Liu et al. (2021), where the conver-
gence rate without utilizing other source domains is

n
−1/(d+q)
0 , we improve this to n−1/(r+q)+n

−1/r
0 by in-

corporating representation learning and leveraging in-
formation from the source domains when S is known.
When both d and q are high-dimensional, r ≪ d signi-
fies that the representation dimension is much smaller
than the original data dimension, allowing for a more
efficient convergence.

5 SELECTED TRANSFER-WGAN

In the previous section, we introduced an oracle algo-
rithm based on a known subset S of reliable source
domains. This leads to an intriguing and practically
significant question: Can we develop a data-driven,
adaptive selection criterion to estimate the subset Ŝ?

Recall that our previous definition of S,

∀t ∈ S,E
P

(t)

Ẑ

dF1
B

(
P

(t)

Y |Ẑ , P
(0)

Y |Ẑ

)
≤ h.
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Estimating the conditional distributions P
(t)

Y |Ẑ=ẑ
and

P
(0)

Y |Ẑ=ẑ
can be challenging due to the differences in

covariates x. This often results in an insufficient num-
ber of samples for Ẑ = ẑ, leading to significant biases
compared to the ground truth. Therefore, using this
distance directly for selection is not feasible.

To address this issue, we aim to utilize the joint distri-
bution as a bridge. By doing so, we can constrain the
1-Wasserstein distance of the joint distribution instead
of conditional distribution. This approach allows for a
more feasible and practical method of selection. Then
we can follow the oracle method mentioned in Section
4 by using Ŝ as a substitute for unknown S.

5.1 Selection Criterion

At first, we are unaware of which source domain is in-
trinsically similar to the target domain with the low-
dimensional representation. Therefore, in the initial
step, we should train a full model using all the source
domains. We also observe that representation learn-
ing, compared to the subsequent conditional genera-
tive model learning, is less affected by outlier source
domains. This phenomenon has also been studied and
confirmed by Ortego et al. (2021). Thus, we can uti-
lize the representation neural network R̃ = Rω̃ and

representations z̃
(t)
i = R̃

(
x
(t)
i

)
obtained from the full

model to construct our selection criterion.

Stage 1. In this stage, our goal is to estimate Ŝ using
the representation R̃ trained in the full model. To
avoid confusion with the previous content, we present
the training loss function of the full model here:

(θ̃, ϕ̃, ω̃) = argmin
θ,ω

argmax
ϕ

L̂1 (Rω, Gθ, Dϕ; [T ]) .

Then, for some constant C > 0, we estimate Ŝ as:
{
t :W1(P

nt

Z̃,Y
, Pn0

Z̃,Y
) ≤ C

(
max

{
n−1/(r+q), n

−1/r
0

})}
,

where Pnt

Z̃,Y
, Pn0

Z̃,Y
are empirical distributions.

Stage 2. In this stage, our goal is to estimate θ̂, ϕ̂, ω̂
using Ŝ. We simply replace S in the Oracle Transfer-
WGAN with Ŝ. The detailed algorithm implementa-
tion can be referenced in the Appendix.

5.2 Theoretical results

In this section, we summarize the key theoretical re-
sults. Due to space constraints, Assumptions 2-6
and the conditions of the theorems have been moved
to the Appendix. Additionally, we choose h =

O
(
max

{
n−1/(r+q), n

−1/r
0

})
. To clearly define a reli-

able source domain, we assume that the outlier source

domains are sufficiently distant from the target do-
main.

Assumption 1. The similarity measure between the
outlier sources and the target domain is assumed to be
of a much larger order than h. Specifically, we assume

∀t ∈ Sc,E
P

(t)

Z̃

dF1
B

(
P

(t)

Y |Z̃ , P
(0)

Y |Z̃

)
= O(hα), α > 1.

From this, we can derive the following two theorems:

Theorem 5.1 Suppose that PZ̃,Y , PẐ,Y are supported

on [−U,U ]r+q for some U > 0 and satisfies Assump-
tions 1, 5-6 provided in Appendix, we have

P (Ŝ = S)→ 1,when nt, n0 → +∞.

Theorem 5.2 Suppose that PZ̃,Y , PẐ,Y are supported

on [−U,U ]r+q for some U > 0 and satisfies Assump-
tions 1, 3-6 provied in Appendix, we have

EĜEP
(0)

Ẑ

dF1
B

(
PĜ|Ẑ , P

(0)

Y |Ẑ

)
≾ n−1/(r+q) + n

−1/(r+q)
0 .

Remark 1. As a result, although the first term in
the upper bound is dominated by the second term,

and the efficiency improvement is only from n
−1/(d+q)
0

to n
−1/(r+q)
0 , this is due to the fact that when S is

unknown, we must also consider the bias introduced by
the estimate Ŝ in the presence of limited samples. This
represents a trade-off where efficiency is sacrificed
to ensure robustness. Since r ≪ d, there is still a
significant improvement.

Remark 2. Since we only know the order of h, the
corresponding constant remains unknown. In practical
applications, we can adjust the constant after deter-
mining the order and use it as a threshold. Addition-

ally, we can sort W1

(
Pnt

Z̃,Y
, Pn0

Z̃,Y

)
for t ∈ [T ], where

smaller values indicate more reliable source domains
for transfer, allowing for a more robust selection.

6 EXPERIMENTS

In this section, we present the key settings and results
of three different experiments3, with additional details
provided in the appendix.

6.1 Numerical simulation

We focus on the problem of estimating the conditional
mean and standard deviation in nonparametric con-
ditional density models. Since our approach is the
first to eliminate the need for a pretrained model,

3Our code is publicly available at
https://github.com/zgj19stat/STWGAN

https://github.com/zgj19stat/STWGAN
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and no pretrained models are available for this task,
we compare the proposed Selected Transfer-WGAN
method (referred to as STWGAN in Table 1) with
two baselines: Target-Only, a method trained ex-
clusively on the target domain without representation
learning, and Pool, an ablation variant where λt = 0.
We have placed additional method comparisons and
experimental results in the Appendix. We simulated
data from the following three models:

Model 1 (M1). A nonlinear model:

Y = X1 + exp (X2 +X3/3) + sin (X4 +X5) + ε,

where ε ∼ N(0, X2
1 ).

Model 2 (M2). A model with a multiplicative error:

Y = (2 +X2
1/3 +X2

2 +X2
3 +X2

4 +X2
5 )/3× ε,

where ε ∼ N(X3, 1).

Model 3 (M3). A mixture model:

Y =I{U≤1/3}N
(
−3−X1/3−X2

2 , 0.25
)

+ I{U>1/3}N
(
3 +X1/3 +X2

2 , 1
)
,

where U ∼ Unif(0, 1) and is independent of X.

In each model, the covariate vector X is generated
from N(µ(t), I100) in the t-th domain. So the ambient
dimension of X is 100, but (M1) and (M2) only de-
pend on the first 5 components of X and (M3) only
depends on the first 2 components of X. To further
demonstrate the robustness and efficiency of our ap-
proach, we consider 5 different source domains, with
the corresponding values of µ(t) provided in appendix.
Additionally, to demonstrate the impact of different
outlier source domains, we introduce posterior drift in
the fourth and fifth source domain.

Similar to the experiments conducted by Liu et al.
(2021); Zhou et al. (2023), we consider the mean
squared error (MSE) of the estimated conditional
mean E(Y |X) and the estimated conditional stan-
dard deviation SD(Y |X). We employ a test
data set {x1, . . . ,xK} of size K = 2000. For
the proposed method, we first generate samples
{η1, . . . , ηJ} of size J = 10000 from the refer-
ence distribution Pη and calculate conditional sam-

ples
{
Ĝ (ηj ,xk) , j = 1, . . . , J, k = 1, . . . ,K

}
. The es-

timated conditional standard deviation is calculated
as the sample standard deviation of the conditional
samples. The MSE of the estimated conditional
mean is MSE(mean) = (1/K)

∑K
k=1{Ê (Y |X = xk) −

E (Y |X = xk)}2. Similarly, the MSE of the esti-
mated conditional standard deviation is MSE(sd) =

(1/K)
∑K

k=1{ŜD(Y |X = xk)− SD(Y |X = xk)}2.

Based on Figure 2, in all three data simulated models,
the first source domain is considered a reliable source
domain, while the others are identified as outlier source
domains. The MSE(mean) and MSE(sd) are summa-
rized in Table 1. Comparing with the models trained
with only target domain, STWGAN has the smallest
MSEs error in most cases.

Figure 2: A simple visualization of STWGAN Stage 1.

Table 1: Mean squared error (MSE) of the estimated
conditional mean, the estimated standard deviation
and the corresponding simulation standard errors (in
parentheses). The experimental results are presented
in three parts, arranged from top to bottom, corre-
sponding to nt = 20000, 40000, 60000 and n0 = 10000.
Our complete experimental results are pro-
vided in the Appendix.

STWGAN Target-only Pool

M1
Mean 15.77(1.29) 21.49(1.24) 16.90(1.63)

SD 4.43(1.48) 8.21(2.84) 1.89(0.45)

M2
Mean 4.40(1.10) 9.51(3.63) 6.75(2.35)

SD 1.95(0.30) 1.39(0.14) 1.84(0.18)

M3
Mean 2.22(0.99) 25.75(4.10) 3.07(1.42)

SD 0.47(0.10) 10.14(5.20) 0.75(0.10)

M1
Mean 10.64(2.07) 17.06(1.91) 16.94(2.94)

SD 6.69(4.47) 7.69(3.33) 1.37(0.22)

M2
Mean 3.12(1.14) 7.10(3.01) 5.15(1.77)

SD 1.90(0.38) 1.53(0.23) 2.10(0.34)

M3
Mean 2.09(1.39) 26.89(7.13) 2.32(1.55)

SD 0.54(0.13) 7.72(4.06) 0.61(0.51)

M1
Mean 10.73(1.16) 24.40(2.84) 17.56(1.69)

SD 2.84(1.59) 9.84(2.56) 1.61(0.56)

M2
Mean 2.22(1.30) 7.73(4.01) 6.96(1.42)

SD 2.37(1.16) 1.51(0.20) 2.05(0.13)

M3
Mean 1.68(1.34) 20.97(3.40) 2.32(1.55)

SD 0.56(0.06) 5.67(2.67) 0.61(0.51)



Conditional Generative Learning from Invariant Representations in Multi-Source

6.2 Image reconstruction: MNIST dataset

We now illustrate the application of the proposed
method to high-dimensional data problems. We use
the MNIST handwritten digits dataset(Deng, 2012),
which contains 60000 images for training and 10000
images for testing. The images are stored in 28 × 28
matrices with gray color intensity from 0 to 1. We use
STWGAN to help reconstruct the missing part of an
image. Specifically, we consider a scenario in which
only the upper or left half of an image is observed,
and the task is to reconstruct the missing part. In this
setting, let X ∈ R28×14 represent the observed upper
or left half of the image, while Y ∈ R28×14 denotes the
missing part. We refer to the two experiments corre-
sponding to different missing parts as “upper2lower”
and “left2right”.

In practice, we construct the target domain and a
source domain directly within the MNIST dataset. We
select 5,000 images of digits 5-9 from the training set
to serve as the target domain, and 50,000 images of
digits 0-9 as the source domain. The experimental re-
sults are illustrated in Figure 3.

(a) STWGAN (b) Target Only

(c) STWGAN (d) Target Only

Figure 3: Comparison of STWGAN and Target Only:
(a) and (b) show results of upper2lower, while figures
(c) and (d) show results of left2right.

In Figure 3, the first column of each panel displays the
true images, the second column shows the generator
condition X, and the remaining columns present the
generated images. Digits “6”, “7”, and “9” are recon-
structed effectively with the aid of the source domain.
However, when only the upper part of the digits is pro-
vided, digit “8” may be misinterpreted as “6” due to
its similar structure, resulting in poorer reconstruction
quality. Nonetheless, in terms of stroke consistency,

the images generated after transfer exhibit greater re-
alism.

6.3 Image-to-Image translation

We demonstrate the application of the proposed
method to the task of image-to-image translation using
the edges2shoes and edges2handbags datasets (Isola
et al., 2017). The edges2shoes dataset includes over
40000 training images derived from the UT Zap-
pos50K dataset (Yu and Grauman, 2017), while the
edges2handbags dataset comprises more than 130000
training images from the iGAN project (Zhu et al.,
2016). Each dataset consists of a real image of shoes
or handbags paired with a corresponding edge map
of the object, where the edges were generated using
the HED edge detector (Xie and Tu, 2015). In both
datasets, the edge maps and real images are stored as
tensors with dimensions 1×286×286 and 3×286×286,
respectively. Due to the smaller sample size in the
edges2shoes dataset, we selected 40000 samples from it
to serve as the target domain and selected 120000 sam-
ples from the edges2handbags dataset as the source
domain.

(a) shoes2edges (b) edges2shoes

Figure 4: Comparison of STWGAN and Target Only.

We then conduct two sets of experiments. In the first
experiment, we use the edge map as Y ∈ R81,796 and
the real image as X ∈ R254,388, with the results shown



Guojun Zhu1,2, Sanguo Zhang1,2, Mingyang Ren3,†

in the figure (4.a). In the second experiment, we re-
verse the X and Y with the results also presented in
the figure (4.b). It can be observed that the STWGAN
method effectively transfers knowledge of complex pat-
terns from the edges2handbags dataset, resulting in
more accurate edge representations on shoes and en-
hancing the richness of patterns in the generated shoe
images. For example, in the case of sneakers with intri-
cate edge details, our method often produces brighter,
more vibrant, and realistic images, while other ap-
proaches tend to generate duller, grayish color pat-
terns, lacking in vibrancy and detail.

7 CONCLUSIONS

We proposed STWGAN, a robust transfer approach
designed to address the challenges of multi-source con-
ditional generation models. This is achieved through a
two-stage training process that maintains the training
stability of WGAN. Our algorithm does not rely on
pre-trained models from large datasets and provides
both non-asymptotic error bounds and asymptotic
guarantees. Future work will focus on two key aspects:
(1) investigating how neural networks can learn com-
plex dimensionality reduction structures while preserv-
ing essential information, and (2) exploring the inte-
gration of a regularization term into diffusion models
to design domain-shared coupling flows, enabling ef-
fective utilization of source domain information.

Acknowledgments

This work was partially supported by the National
Natural Science Foundation of China No.12171454,
the Fundamental Research Funds for the Cen-
tral Universities and the Shanghai Sailing Program
(24YF2721900), SJTU Startup Grant. We would like
to thank the reviewers who provided valuable com-
ments.

References

Arjovsky, M., Chintala, S., and Bottou, L. (2017).
Wasserstein generative adversarial networks. In In-
ternational conference on machine learning, pages
214–223. PMLR.

Bastani, H. (2021). Predicting with proxies: Transfer
learning in high dimension. Management Science,
67(5):2964–2984.

Cai, T. T. and Pu, H. (2024). Transfer learn-
ing for nonparametric regression: Non-asymptotic
minimax analysis and adaptive procedure. arXiv
preprint arXiv:2401.12272.

Chen, M., Liao, W., Zha, H., and Zhao, T. (2020).

Distribution approximation and statistical estima-
tion guarantees of generative adversarial networks.
arXiv preprint arXiv:2002.03938.

Courty, N., Flamary, R., Habrard, A., and Rakotoma-
monjy, A. (2017). Joint distribution optimal trans-
portation for domain adaptation. Advances in neu-
ral information processing systems, 30.

Damodaran, B. B., Kellenberger, B., Flamary, R.,
Tuia, D., and Courty, N. (2018). Deepjdot: Deep
joint distribution optimal transport for unsuper-
vised domain adaptation. In Proceedings of the
European conference on computer vision (ECCV),
pages 447–463.

Deng, L. (2012). The mnist database of handwritten
digit images for machine learning research. IEEE
Signal Processing Magazine, 29(6):141–142.

Fernando, B., Habrard, A., Sebban, M., and Tuyte-
laars, T. (2013). Unsupervised visual domain adap-
tation using subspace alignment. In Proceedings of
the IEEE international conference on computer vi-
sion, pages 2960–2967.

Genevay, A., Cuturi, M., Peyré, G., and Bach, F.
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Multi-Source: Robustness and Efficiency

1 IMPLEMENT AND EXPERIMENT DETAILS

In this section, we provide additional experimental and algorithmic details not covered in the main text. Section
1.1 includes definitions of the neural networks and the core pseudocode for the algorithms. Sections 1.2 to 1.4
cover the three experiments discussed in the main text, while Section 1.5 includes an additional experiment.

1.1 Implement

In terms of implementation details, we first provide a brief overview of feedforward neural networks (FNN)
utilizing the rectified linear unit (ReLU) activation function. The ReLU function is defined as σ(x) := max(x, 0)
and is applied component-wise to the input x. A neural network can be represented as a composite function
given by

ζ(x) = LH ◦ σ ◦ LH−1 ◦ σ ◦ · · · ◦ σ ◦ L1 ◦ σ ◦ L0(x), x ∈ Rp0 ,

where Li(x) = W ix + bi represents the i-th linear transformation with a weight matrix W i ∈ Rpi+1×pi and a
bias vector bi ∈ Rpi+1 . Here, pi denotes the width of the i-th layer for i = 0, 1, . . . ,H. The overall architecture
of the network is characterized by its width, denoted as W = max {p1, . . . , pH}, and its depth, represented
by H. To facilitate discussion, we denote a neural network with input dimension p0, output dimension pH+1,
a maximum width of W , and a maximum depth of H as NN (p0, pH+1,W,H). This notation encapsulates
the structural parameters of the network, allowing for a more concise representation in subsequent discussions
regarding training, optimization, and performance evaluation.

We now specify the function classes below:

• For the generator network class Gθ: Let G ≡ NN (r +m, q,WG, HG) be a class of ReLU-activated FNNs,
Gθ : Rd+m → Rq, with parameter θ, width WG, and depth HG.

• For the discriminator network class Dϕ: Let D ≡ NN (r + q, 1,WD, HD)∩F1
Lip be a class of ReLU-activated

FNNs, fϕ : Ω→ R, with parameter ϕ, width WD, and depth HD.

• For the representation network class Rω: Let R ≡ NN (d, r,WR, HR) be a class of ReLU-activated FNNs,
Rω : Rd → Rr, with parameter ω, width WR, and depth HR.

Algorithm 1 outlines the core component of Stage 1 in the Oracle Transfer-WGAN. To ensure that the discrim-
inator belongs to the class of 1-Lipschitz functions, we apply the gradient penalty algorithm (Gulrajani et al.,
2017). For convenience, in each minibatch, we select nb samples from the target domain and ut × nb samples
from the t-th source domain, where t ∈ S and u0 = 1, ut ∈ N+. We denote np = nb×

∑
t∈S∪{0} ut. Additionally,

it is worth mentioning that for the EOT algorithm, we use the Sinkhorn algorithm(Cuturi, 2013) to compute
the 1-Wasserstein distance. The computation for Stage 2 of the Oracle Transfer-WGAN is omitted, as it is a
simplified version of Algorithm 1. Algorithm 2 outlines the core component of Stage 1 in the Selected Transfer-
WGAN. The computation for Stage 2 of the Selected Transfer-WGAN is omitted, as it is a simplified version of
Algorithm 1. We implemented these algorithms in Pytorch.

Besides, we conduct training using a single NVIDIA GeForce RTX 4090 GPU with most training runs taking
between 1-10 hours, depending on the model size and the specific experiments conducted.



Conditional Generative Learning from Invariant Representations in Multi-Source

Algorithm 1 Oracle Transfer-WGAN

Require: Tuning parameter λt, λgp; Target minibatch size nb ≤ n0; Minibatch ratio ut; Noise dimension m;
1: for number of training iterations in stage 1 do

2: ∀t ∈ S ∪ {0}, Sample {(x(t)
bi ,y

(t)
bi }nb×ut

i=1 from {(x(t)
i ,y

(t)
i }nt

i=1 and {η(t)bi }nb×ut

i=1 from N(0, Im)
3: Update the discriminator Dϕ1

by descending its stochastic gradient:

∇ϕ1

[
1

np

nb×ut∑

t∈S∪{0},i=1

(
−Dϕ1

(
x
(t)
bi , Gθ1

(
ηi, Rω

(
x
(t)
bi

)))

+Dϕ1

(
x
(t)
bi ,y

(t)
bi

)
+ λgp

(∥∥∥∇ϕ1
Dϕ1

(
x
(t)
bi ,y

(t)
bi

)∥∥∥
2
− 1
)2)]

.

4: Update the generator Gθ1
by descending its stochastic gradient:

∇θ1


 1

np

nb×ut∑

t∈S∪{0},i=1

Dϕ1

(
x
(t)
i , Gθ1

(
ηi, Rω

(
x
(t)
i

)))

 .

5: Solving the optimal transport problem using the Large-scale EOT algorithm:

∀t ∈ S, min
γ∈Π

(
P

nb×ut
X,Y ,P

nb
X,Y

)
〈
γ,C

(t)
Rω

〉
F
.

6: Update the representation Rω by descending its stochastic gradient:

∇ω

[
1

np

nb×ut∑

t∈S∪{0},i=1

(
Dϕ1

(
x
(t)
i , Gθ1

(
ηi, Rω

(
x
(t)
i

)))
−Dϕ1

(
x
(t)
i ,y

(t)
i

))

+
∑

t∈S

λt min
γ∈Π

(
P

nb×ut
X,Y ,P

nb
X,Y

)
〈
γ,C

(t)
Rω

〉
F

]
.

7: end for

Algorithm 2 Selected Transfer-WGAN

Require: Tuning parameter λt, λgp; Target minibatch size nb ≤ n0; Minibatch ratio ut; Noise dimension m;
Threshold M ;

1: for number of training iterations in stage 1 do

2: ∀t, Sample {(x(t)
bi ,y

(t)
bi }nb×ut

i=1 from {(x(t)
i ,y

(t)
i }nt

i=1 and {η(t)bi }nb×ut

i=1 from N(0, Im)
3: Update the full model neural networks Dϕ̃, Gθ̃ and Rω̃ similar to Algorithm 1.
4: end for
5: Calculating the 1-Wasserstein distance using the EOT algorithm:

∀t, min
γ∈Π(Pnt

X,Y ,P
n0
X,Y )

〈
γ,C

(t)
Rω̃

〉
F
.

6: Estimate Ŝ with threshold M :

Ŝ ← {t :W1(P
nt

Rω̃(X),Y , P
n0

Rω̃(X),Y ) ≤M}.



1.2 Nonparametric conditional density estimation

We will first present the network architecture, followed by the details of the simulated dataset. For the proposed
method, the conditional generator G is parameterized using a neural network in NN (r +m, q, 512, 2). The
discriminator D is parameterized using a neural network in NN (r + q, 1, 128, 2) and the representation R is
parameterized using a neural network in NN (d, r, 512, 2). In practice, we experimented with different values
of r and found that choosing a value slightly larger than the ground-true yields the best results. Thus, we set
r = 10 for models (M1) and (M2), and r = 5 for model (M3). The noise vector η is drawn from N(0, I3)
in models (M1) and (M2), and from N(0, 1) in model (M3). We set the other hyperparameters as follows:
∀t ∈ S, λt = 0.1, epochs = 300,batch size = 64, and the optimizer is Adam, with an initial learning rate of
0.0001.

Table 1: The value of µ(t), where the index (t) represents the domain, with (0) denoting the target domain.

(t) µ(t) posterior drift

(0) (2, 1, 0, . . . , 0)⊤ -

(1) (0, 0, 0, . . . , 0)⊤ No

(2) (5, 5, 5, . . . , 5)⊤ No

(3) (−5, . . . ,−5)⊤ No

(4) (2, 1, 0, . . . , 0)⊤ Yes

(5) (2, 1, 0, . . . , 0)⊤ Yes

We consider the posterior drift in the fourth and fifth source domains across different data generation models.
For convenience, the two source domains will be referred to as (4) and (5) below.

Model 1 (M1). A nonlinear model with an additive error term:

(4) : Y = 5X1 + exp (X2 +X3/3 + 2) + cos (X4 +X5) + ε+ 5, ε ∼ N(0, X2
1 ),

(5) : Y = X1/5 + exp (X2 +X3/3− 2) + cos (X4 +X5) + ε− 5, ε ∼ N(0, X2
1 ),

Model 2 (M2). A model with a multiplicative Gaussian error term:

(4) : Y = (7 +X3
1/3 +X3

2 +X3
3 +X3

4 +X3
5 )× ε+ 5,

(5) : Y = (−3 +X1 +X2 +X3 +X4 +X5)× ε− 5,

where ε ∼ N(X3, 1)

Model 3 (M3). A mixture of two normal distributions:

(4) : Y = I{U≤1/3}N
(
−8−X3

1 −X2, 0.25
)
+ I{U>1/3}N

(
8 +X3

1 +X2, 1
)
,

(5) : Y = I{U≤1/3}N (2−X1 −X2, 0.25) + I{U>1/3}N (−2 +X1 +X2, 1) ,

where U ∼ Unif(0, 1) and is independent of X.

In addition to the three methods, we also considered a more straightforward approach using pre-trained fine-
tuning models, referred to as PT-FT. In this method, we trained the model on the source domain for 450
epochs before continuing the training on the target domain. Additionally, it is worth noting that we did not use
the representation network in both the Target-only and PT-FT methods. These are the complete experimental
results, where we considered different sample sizes for the source domains while keeping n0 = 10, 000 fixed, as
shown in Table 2.

1.3 Image reconstruction: MNIST dataset

Regarding this experiment, we provide the details of the network architecture here. To maintain maximum
consistency between theoretical conditions and experimental setup, we opted not to use convolutional neural
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Table 2: Mean squared error (MSE) of the estimated conditional mean, the estimated standard deviation and
the corresponding simulation standard errors (in parentheses).

STWGAN Target-only Pool PT-FT

nt = 20, 000

M1
Mean 15.77(1.29) 21.49(1.24) 16.90(1.63) 77.87(11.27)

SD 4.43(1.48) 8.21(2.84) 1.89(0.45) 2.17(1.22)

M2
Mean 4.40(1.10) 9.51(3.63) 6.75(2.35) 3.83(2.82)

SD 1.95(0.30) 1.39(0.14) 1.84(0.18) 2.08(0.33)

M3
Mean 2.22(0.99) 25.75(4.10) 3.07(1.42) 3.07(1.02)

SD 0.47(0.10) 10.14(5.20) 0.75(0.10) 9.94(1.69)

nt = 40, 000

M1
Mean 10.64(2.07) 17.06(1.91) 16.94(2.94) 81.76(11.55)

SD 6.69(4.47) 7.69(3.33) 1.37(0.22) 1.66(0.46)

M2
Mean 3.12(1.14) 7.10(3.01) 5.15(1.77) 5.01(2.81)

SD 1.90(0.38) 1.53(0.23) 2.10(0.34) 2.67(1.04)

M3
Mean 2.09(1.39) 26.89(7.13) 2.32(1.55) 2.96(0.82)

SD 0.54(0.13) 7.72(4.06) 0.61(0.51) 8.09(2.72)

nt = 60, 000

M1
Mean 10.73(1.16) 24.40(2.84) 17.56(1.69) 85.43(14.43)

SD 2.84(1.59) 9.84(2.56) 1.61(0.56) 1.60(0.81)

M2
Mean 2.22(1.30) 7.73(4.01) 6.96(1.42) 5.27(3.10)

SD 2.37(1.16) 1.51(0.20) 2.05(0.13) 3.46(1.36)

M3
Mean 1.68(1.34) 20.97(3.40) 2.32(1.55) 2.66(1.03)

SD 0.56(0.06) 5.67(2.67) 0.61(0.51) 8.41(2.19)

network (CNN) when handling the image dataset. Instead, we continued to use a simple feedforward neu-
ral network (FNN). The proposed method utilizes a conditional generator G parameterized by a neural net-
work NN (m+ r, q, 512, 2), a discriminator D parameterized by a neural network NN (d+ q, 1, 1024, 3), and
a representation network R parameterized by a neural network NN (d, r, 512, 2). The random noise vector
η ∼ N (0, I10), and we set r = 50. We set the other hyperparameters as follows: ∀t ∈ S, λt = 0.1, epochs =
300,batch size = 64, and the optimizer used is RMSprop.

Furthermore, for a comprehensive evaluation, we employ two widely-used metrics: Fréchet Inception Distance
(FID) and Learned Perceptual Image Patch Similarity (LPIPS). While FID measures the similarity between
generated and real images by comparing their feature distributions in a pre-trained Inception network, LPIPS
quantifies perceptual similarity by leveraging deep features from a pre-trained convolutional neural network.
Notably, both metrics are not limited to evaluating image generation tasks but are also effective for assessing
image reconstruction tasks such as inpainting and super-resolution(Chung et al., 2022). In the MNIST left2right
experiment, we generated 25,000 images using the trained model to calculate the FID and LPIPS scores shown
in table 3.

Table 3: Comparison of STWGAN and Target-only on FID and LPIPS scores in left2right experiment.

STWGAN Target-only

FID 77.19 96.98
LPIPS 0.0698 0.0717

1.4 Image-to-Image translation

In this experiment, considering the issue of image size, we followed the neural network setup from previous
work and chose not to continue using FNNs. This setup aligns with the image experiment settings used in all
current FNN-related theoretical studies. Our innovation lies in incorporating a novel regularization term into the
method. In this work, we build upon the architecture proposed by Isola et al. (2017), making modifications only
to the Generator network, where we adopt the UNet256 structure. Specifically, we treat the first half of their
Unet-based Generator (Ronneberger et al., 2015) as our Representation network, where the vector generated at
the lowest layer of the “U”-shaped structure is considered the domain-invariant representation. Therefore, we



set r = 512. The second half of the Unet is regarded as our Generator network. The rest of the architecture,
including the Discriminator, loss functions, and other hyperparameters, remain unchanged from the original
setup.

1.5 Conditional prediction

In this experiment, we consider the abalone dataset as Liu et al. (2021), which is available in the UCI Ma-
chine Learning Repository(Dua et al., 2017), includes physical measurements of abalone and their corresponding
number of rings, which are used to determine age. The age determination process involves cutting the shell,
staining it, and counting the rings under a microscope, which is labor-intensive. To simplify age prediction, other
easily measurable attributes are utilized. The dataset comprises 9 variables: sex, length, diameter, height, whole
weight, shucked weight, viscera weight, shell weight, and rings. All variables except sex are continuous. In this
experiment, the number of rings is treated as the response variable Y ∈ R, while the remaining measurements
form the covariate vector X ∈ R9. The categorical variable sex represents three groups: female, male, and infant.
We treat the infant group as the target and the others as sources for conditional prediction of rings.

For more baseline, we refer to the latest paper that presents the method MSSG(Lai et al., 2024). This method
focuses on a two-source scenario, where the target dataset is created by concatenating the two source datasets,
with no third dataset involved. Considering our task is conditional prediction, we use mean squared error(MSE)
as evaluation. For the proposed method, the conditional generator G is parameterized using a neural network
in NN (r +m, q, 512, 2). The discriminator D is parameterized using a neural network in NN (r + q, 1, 128, 2)
and the representation R is parameterized using a neural network in NN (d, r, 512, 2). The results are listed in
table 4 (nt = 1000, T = |S| = 2, |Ŝ| = 2). In this experiment, Pool performs well because the infant group is
likely a combination of the male and female groups, which also aligns with the problem scenario of the MSSG
algorithm. The algorithm does not require target data, therefore, the quantity of n0 in the experiment does not
affect the MSSG results.

Table 4: Mean squared error (MSE) of the age prediction and the corresponding standard errors (in parentheses).

STWGAN MSSG Target-only Pool PT-FT
n0=100 3.72(0.25) 6.184(0.082) 4.80(0.61) 3.74(0.13) 3.93(0.28)
n0=500 3.21(0.17) 6.184(0.082) 3.59(0.17) 2.93(0.06) 6.55(0.33)

2 A HIGH LEVEL DESCRIPTION OF THE ERROR ANALYSIS

Below we first present a high level description of the error analysis. For the estimator Ĝ of the conditional

generator, we are interested in bounding the error dF1
B

(
PẐ,Ĝ, P

(0)

Ẑ,Y

)
. Our basic idea is to decompose this error

into terms that are easier to analyze. Given that we have proposed algorithms for different scenarios, but the
analysis is quite similar, we will use the oracle algorithm as an example.

Let
{(

x
(t)′
i ,y

(t)′
i , η

(t)′
i

)
, i = 1, · · ·nt, t = 0, · · · , T

}
be ghost samples that are independent of the original sam-

ples. Here we introduce ghost samples as a technical tool for bounding the stochastic error term E3, E4 defined
below. We consider (Ĝ, D̂, R̂) based on the empirical version of L(G,D,R) that depends on the original sam-

ples
(
x
(t)
i ,y

(t)
i , η

(t)
i

)
given in Algorithm 1 and

(
Ĝ′, D̂′, R̂′

)
based on the loss function of the ghost samples

(
x
(t)′
i ,y

(t)′
i , η

(t)′
i

)
.

Recall the error dF1
B

(
PẐ,Ĝ, P

(0)

Ẑ,Y

)
is defined by

dF1
B

(
PẐ,Ĝ, P

(0)

Ẑ,Y

)
= sup

f∈F1
B

{Ef(Ẑ, Ĝ)− E
P

(0)

Ẑ,Y

f(Ẑ, Y )}. (1)

We consider mixture distribution PẐ,Y =
∑

t∈S∪{0}

nt
n
P

(t)

Ẑ,Y
, n =

∑
t∈S∪{0} nt and denote ẑ

(t)
i = R̂(x

(t)
i ), ẑ

(t)′
i =
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R̂′(x(t)′
i ). Then we decompose (1) as follows:

dF1
B

(
PẐ,Ĝ, P

(0)

Ẑ,Y

)
≤ dF1

B

(
PẐ,Ĝ, PẐ,Y

)
+ dF1
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By Lemma 3.1, we have
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ẑ
(t)′
i , Ĝ′
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By lemma 3.2 and Assumption 3, we have
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We combine the E7 and E8 into E2, because they describe how powerful the generator class and representation
class are in realizing the empirical version of the noise outsourcing lemma and reducing distributional differences,
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ẑ
(t)′
i ,y

(t)′
i

)




+ inf
ω

{
K
∑

t∈S

nt
n
dF1

B

(
Pnt

Rω(X), P
n0

Rω(X)

)}
,

(8)

where this inequality holds because it is easy to see that
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We also combine the E5 and E6 into E3 because they both describe the distance between the distribution and its
empirical distribution,

E3 := E5 + E6 = sup
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By their definitions, we can see that E1, E2 are approximation errors; E3, E4 are stochastic errors. We summarize
the above derivation in the following lemma.

Lemma 2.1. Let Ĝ = Gθ̂, R̂ = Rω̂ be the minimax solution in oracle algorithm. Then the bounded Lipschitz

distance between PẐ,Ĝ and P
(0)

Ẑ,Y
can be decomposed as follows.

dF1
B

(
PẐ,Ĝ, P

(0)

Ẑ,Y

)
≤ 2E1 + E2 + E3 + E4 + h. (10)

Theorems 4.1-5.2 are proved based on the error decomposition (10).
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3 THEORETICAL RESULTS

In this section, we present the supporting lemmas and prove the theorems. First, in Section 3.1, we outline the
assumptions and non-asymptotic error bounds of the Oracle Transfer-WGAN algorithm. Then, in Section 3.2,
we present the lemmas required for our proofs, followed by a discussion of certain equivalences in Section 3.3. In
Section 3.4, we provide non-asymptotic upper bound estimates for the decomposed errors introduced in Section
2. Finally, in Section 3.5, we complete the proofs of all the theorems.

3.1 Assumption and non-asymptotic error bound of oracle transfer-WGAN

For the sake of analysis, we make the following mild assumptions. To avoid confusion, we denote Ẑ = R̂(X) and
any random variable without domain index (t) should be understood as referring to all domains, including both
reliable source and target domains. Additionally, we believe that the assumptions regarding Z̃ also hold for Ẑ,
as the latter eliminates the influence of outlier source domains during training.

Assumption 1. The similarity measure between the outlier sources and the target domain is assumed to be of
a much larger order than h. Specifically, we assume

∀t ∈ Sc,E
P

(t)

Z̃

dF1
B
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Y |Z̃ , P
(0)

Y |Z̃

)
= O(hα), α > 1.

Assumption 2. For some δ > 0, (Ẑ, Y ) satisfies the first-order moment tail condition, for any n ≥ 1,

E
[
∥(Ẑ, Y )∥I{∥(Ẑ,Y )∥>logn}

]
= O

(
n−(logn)δ/(r+q)

)
.

Assumption 3. The noise distribution Pη is absolutely continuous with respect to the Lebesgue measure.

Assumption 4. The IPM distance between the conditional distributions of reliable source domains and the

target domain is bounded in expectation, for some h = O
(
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,
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Assumption 5. The conditional distribution of the target domain satisfies a certain Lipschitz condition under
the Total Variation (TV) distance, for some K > 1 :

∀ẑ1, ẑ2, dTV

(
P

(0)

Y |Ẑ=ẑ1
, P

(0)

Y |Ẑ=ẑ2

)
≤ K − 1

2B
∥ẑ1 − ẑ2∥1 ,

where dTV (·, ·) is the TV distance.The TV distance is a measure of the difference between two probability
distributions. It is defined as: dTV (P,Q) = 1

2

∫
|p(x)− q(x)|dx, where p(x) and q(x) are the probability density

functions of the distributions P and Q, respectively.

Assumption 6. The conditional distribution of the target domain satisfies a certain Lipschitz condition under
the 1-Wasserstein distance, for some K > 1 :

∀z̃1, z̃2 ∈ Z,W1

(
P

(0)

Y |Z̃=z̃1
, P

(0)

Y |Z̃=z̃2

)
≤ (K − 1) ∥z̃1 − z̃2∥1 ,

where W1(·, ·) is the 1-Wasserstein distance. Gibbs and Su (2002) conducted a detailed comparison between
the Total Variation (TV) distance and the 1-Wasserstein distance, revealing that there is no strict dominance
between the two measures.

In addition to Assumption 1 presented in the main text, Assumptions 2 and 3 are standard conditions commonly
found in the literature. Assumption 2 is a technical assumption used to handle the case where the support of
PẐ,Y is an unbounded set. When the support of PẐ,Y is bounded, this assumption is naturally satisfied, which
aligns with most practical scenarios. Assumption 3 is a standard assumption, typically satisfied when Pη is taken
as the standard normal distribution. Assumption 4 constrains the differences in the conditional distributions
between all reliable source domains and the target domain to be bounded in expectation, considering it as part of



the bias introduced by transfer. The assumption naturally holds when P
(t)

Y |Ẑ = P
(0)

Y |Ẑ or when h is a uniform upper

bound of dF1
B

(
P

(t)

Y |Ẑ , P
(0)

Y |Ẑ

)
with respect to Ẑ. Many works directly assume that the conditional distributions

are identical, which is a relatively strong assumption (Fernando et al., 2013; Long et al., 2014; Gong et al., 2016).
In contrast, Assumption 3 is more relaxed. Assumption 5-6 is a technical assumption requiring the conditional
distribution on target domain to satisfy a certain uniform continuity.

For the generator network Gθ, we require that

∥Gθ∥∞ ≤ log n. (11)

This condition is satisfied by adding an additional clipping layer ℓ after the original output layer of the network,

ℓ(a) = a ∧ cn ∨ (−cn) = σ (a+ cn)− σ (a− cn)− cn,

where cn = log n. We truncate the value of ∥Gθ∥ to an increasing cube [− log n, log n]q so that the support of
the evaluation function to [− log n, log n]r+q. This restricts the evaluation function class to a 2 log n domain.

Based on this, we derive the following three theorems, numbered according to the original section sequence, with
their proofs provided in Section 3.5.

Theorem 4.1 Suppose Assumptions 2-5 hold. Let (WD, HD) of Dϕ, (WG, HG) of Gθ and (WR, HR) of Rω be
specified such that WDHD = ⌈√n⌉ ,W 2

GHG = c1qn and W 2
RHR = c2rn for some constants 12 ≤ c1, c2 ≤ 384.

Let n =
∑

t∈S∪{0} nt, we have:

EĜdF1
B

(
PẐ,Ĝ, P

(0)

Ẑ,Y

)
≾ n−1/(r+q) log n+ n

−1/r
0 .

When PZ,Y has a bounded support, we can drop the logarithm factor in the first term.

Theorem 4.2 Suppose that PẐ,Y is supported on [−U,U ]r+q for some U > 0 and Assumptions 3-5 hold. Let

(WD, HD) of Dϕ, (WG, HG) of Gθ and (WR, HR) of Rω be specified such that WDHD = ⌈√n⌉ ,W 2
GHG = c1qn

and W 2
RHR = c2rn for some constants 12 ≤ c1, c2 ≤ 384. Let the output of Gθ be on [−U,U ]q. Let n =∑

t∈S∪{0} nt, we have:

EĜdF1
B

(
PẐ,Ĝ, P

(0)

Ẑ,Y

)
≾ n−1/(r+q) + n

−1/r
0 .

Theorem 4.3 Under the conditions of Theorem 4.2, we have

EĜEP
(0)

Ẑ

dF1
B

(
PĜ|Ẑ , P

(0)

Y |Ẑ

)
≾ n−1/(r+q) + n

−1/r
0 .

Remark. The most challenging part is addressing the term n
−1/r
0 even after transfer. The problem lies in the

fact that learning a generative model requires learning the complete distribution information, not just simple
statistics like conditional mean and variance. Thus, we cannot avoid the process of approximating the true
distribution with the empirical distribution from samples, which introduces significant bias.

3.2 Proofs of the lemmas

Now, we will introduce the following lemmas and prove some of our propositions.

Lemma 3.1(Liu et al. (2021) Lemma 3.1). For any symmetric function classes F and H, denote the approxi-
mation error E(H,F) as

E(H,F) := sup
h∈H

inf
f∈F
∥h− f∥∞,

then for any probability distributions µ and ν,

dH(µ, ν)− dF (µ, ν) ≤ 2E(H,F).

This inequality can be extended to an empirical version by using empirical measures.
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Lemma 3.2 Suppose Assumption 5 holds. We have:

∀t ∈ [T ], dF1
B

(
P

(t)

Ẑ,Y
, P

(0)

Ẑ,Y

)
≤ E

P
(t)

Ẑ

dF1
B

(
P

(t)

Y |Ẑ , P
(0)

Y |Ẑ

)
+KdF1

B

(
P

(t)

Ẑ
, P

(0)

Ẑ

)
.

Proof. First, we can expand it according to the definition,

dF1
B

(
P

(t)

Ẑ,Y
, P

(0)

Ẑ,Y

)
= sup

f∈F1
B

{
E
P

(t)

Ẑ,Y

f(ẑ,y)− E
P

(0)

Ẑ,Y

f(ẑ,y)

}

= sup
f∈F1

B

∫ ∫
f(ẑ,y)p

(t)

Ẑ,Y
(ẑ,y)− f(ẑ,y)p(0)

Ẑ,Y
(ẑ,y)dydẑ

= sup
f∈F1

B

∫ ∫
f(ẑ,y)p

(t)

Y |Ẑ=ẑ
(y)p

(t)

Ẑ
(ẑ)− f(ẑ,y)p(0)

Y |Ẑ=ẑ
(y)p

(0)

Ẑ
(ẑ)dydẑ

= sup
f∈F1

B

∫ ∫
f(ẑ,y)

[
p
(t)

Y |Ẑ=ẑ
(y)− p(0)

Y |Ẑ=ẑ
(y)
]
p
(t)

Ẑ
(ẑ)

+ f(ẑ,y)p
(0)

Y |Ẑ=ẑ
(y)
[
p
(t)

Ẑ
(ẑ)− p(0)

Ẑ
(ẑ)
]
dydẑ

≤ sup
f∈F1

B

∫ ∫
f(ẑ,y)

[
p
(t)

Y |Ẑ=ẑ
(y)− p(0)

Y |Ẑ=ẑ
(y)
]
p
(t)

Ẑ
(ẑ)dydẑ

︸ ︷︷ ︸
:=L1

+ sup
f∈F1

B

∫ ∫
f(ẑ,y)p

(0)

Y |Ẑ=ẑ
(y)
[
p
(t)

Ẑ
(ẑ)− p(0)

Ẑ
(ẑ)
]
dydẑ

︸ ︷︷ ︸
:=L2

,

where the inequality is trivial, we have

L1 = sup
f∈F1

B

∫ ∫
f(ẑ,y)

[
p
(t)

Y |Ẑ=ẑ
(y)− p(0)

Y |Ẑ=ẑ
(y)
]
p
(t)

Ẑ
(ẑ)dydẑ,

and

L2 = sup
f∈F1

B

∫ ∫
f(ẑ,y)p

(0)

Y |Ẑ=ẑ
(y)
[
p
(t)

Ẑ
(ẑ)− p(0)

Ẑ
(ẑ)
]
dydẑ.

For L1, when f(ẑ,y) ∈ F1
B , for its component embedding, ∀ẑ0, f(ẑ,y)|ẑ=ẑ0

∈ F1
B . Therefore, we can make the

following scaling:

L1 ≤
∫

sup
f |ẑ∈F1

B

{∫
f(ẑ,y)

[
p
(t)

Y |Ẑ=ẑ
(y)− p(0)

Y |Ẑ=ẑ
(y)
]
dy

}
p
(t)

Ẑ
(ẑ)dẑ

=

∫
dF1

B

(
P

(t)

Y |Ẑ=ẑ
, P

(0)

Y |Ẑ=ẑ

)
p
(t)

Ẑ
(ẑ)dẑ,

where the first inequality is trivial.

For L2, let f2(ẑ) :=
∫
f(ẑ,y)p

(0)

Y |Ẑ=ẑ
(y)dy. Next, we will prove that it is a K-Lipschitz continuous function.

Consider ∀ẑ1, ẑ2, we have

|f2 (ẑ1)− f2 (ẑ2)| =
∣∣∣∣
∫
f (ẑ1,y) p

(0)

Y |Ẑ=ẑ1
(y)− f (ẑ2,y) p

(0)

Y |Ẑ=z2
(y)dy

∣∣∣∣

=

∣∣∣∣
∫

[f (ẑ1,y)− f (ẑ2,y)] p
(0)

Y |Ẑ=ẑ1
(y) + f (ẑ2,y)

[
p
(0)

Y |Ẑ=ẑ1
(y)− p(0)

Y |Ẑ=ẑ2
(y)
]
dy

∣∣∣∣

≤
∫
|f (ẑ1,y)− f (ẑ2,y)| p(0)Y |Ẑ=ẑ1

(y)dy +

∫ ∣∣∣f (ẑ2,y)
[
p
(0)

Y |Ẑ=ẑ1
(y)− p(0)

Y |Ẑ=ẑ2
(y)
]∣∣∣ dy

≤
∫

y

∥ẑ1 − ẑ2∥1 p
(0)

Y |Ẑ=ẑ1
(y)dy + 2BDTV

(
P

(0)

Y |Ẑ=ẑ1
, P

(0)

Y |Ẑ=ẑ2

)

≤ K ∥ẑ1 − ẑ2∥1 ,



where the first inequality is an absolute value inequality, the second inequality considers f(ẑ,y) ∈ F1
Band the

third inequality is based on Assumption 5. Furthermore, since |f2(ẑ)| ≤ supy |f(ẑ,y)| ≤ B, it follows that
f2
K
∈ F1

B
K

. Therefore, we have

L2 ≤ sup
f2∈FK

B

∫

z

f2(ẑ)
(
P

(t)

Ẑ
(ẑ)− P (0)

Ẑ
(ẑ)
)
dẑ = KdF1

B
K

(
P

(t)

Ẑ
, P

(0)

Ẑ

)
≤ KdF1

B

(
P

(t)

Ẑ
, P

(0)

Ẑ

)
.

where the last inequality is trivial since K > 1. □
Lemma 3.3(Lu and Lu (2020) Proposition 3.1). Assume that probability distribution π on Rd satisfies that
M3 = Eπ|X|3 <∞, and let π̂n be its empirical distribution. Then

EdW1
(π̂n, π) ≾

√
dn−

1
d ,

where dW1
is the 1-Wasserstein distance.

Remark. When
(
Ẑ, Y

)
satisfies Assumption 2, it also satisfies the condition of Lemma 3.3. Let V =

(
Ẑ, Y

)
,

and by Markov’s inequality,

Pr(∥V ∥ > log n) ≤ E∥V ∥I{∥V ∥ > log n}
log n

= O

(
n−

(log n)δ

r+q / log n

)
.

Thus,

E∥V ∥3 =

∫ ∞

0

3t2P (∥V ∥ > t)dt =

∫ ∞

0

O(1)3t exp

(
− t1+δ

r + q

)
dt <∞.

Lemma 3.4(Shen et al. (2019) Theorem 4.3). Let f be a Lipschitz continuous function defined on Br+q
∞ (R). For

arbitrary WD, HD ∈ N+, there exists a function Dϕ implemented by a ReLU feedforward neural network with
width no more than WD and depth no more than HD such that

∥f −Dϕ∥∞ ≾ R
√
d+ q (WDHD)

− 2
r+q .

Lemma 3.5(Liu et al. (2021)). Suppose probability measure ν supported on R is absolutely continuous w.r.t.
Lebesgue measure, and probability meansure µ is supported on Rq.ηi and yi are i.i.d. samples from ν and µ,
respectively for i ∈ [n]. Then there exist generator ReLU FNN G : R 7→ Rq maps ηi to yi for all i. Moreover,
such G can be obtained by properly specifying W 2

GLG = cqn for some constant 12 ≤ c ≤ 384.

Lemma 3.6(Srebro and Sridharan, 2010). Assume supf∈F ∥f∥∞ ≤ B. For any distribution µ and its empirical

distribution µ̂n, the empirical Rademacher complexity R̂n(F), we have

E [dF (µ̂n, µ)] ≤ 2ER̂n(F) ≤ E inf
0<δ<B

(
4δ +

12√
n

∫ B

δ

√
logN (ϵ,F , L∞ (Pn))dϵ

)
.

Lemma 3.7(Wellner et al. (2013), Theorem 2.7.1). Let X be a bounded, convex subset of Rd with nonempty
interior. There exists a constant cd depending only on d such that

logN
(
ϵ,F1(X ), ∥ · ∥∞

)
≤ cdλ

(
X 1
)(1

ϵ

)d

,

for every ϵ > 0, where F1(X ) is the 1-Lipschitz function class defined on X , and λ
(
X 1
)
is the Lebesgue measure

of the set {x : ∥x−X∥ < 1}.
Lemma 3.8 Suppose Assumption 6 holds. We have,

∀t ∈ [T ],E
P

(t)

Z̃

dF1
B
(P

(t)

Y |Z̃ , P
(0)

Y |Z̃) ≤W1(P
(t)

Z̃,Y
, P

(0)

Z̃,Y
) +KW1(P

(t)

Z̃
, P

(0)

Z̃
),

where W1(·, ·) denotes the 1-Wasserstein distance
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Proof. Firstly, we consider a trivial result, dF1
B
(P

(t)

Y |Z̃ , P
(0)

Y |Z̃) ≤ W1(P
(t)

Y |Z̃ , P
(0)

Y |Z̃). By the definition of 1-

Wasserstein distance, we have W1

(
P

(t)

Y |Z̃=z̃
, P

(0)

Y |Z̃=z̃

)
= infγz̃

∫
∥Y (t) − Y (0)∥dγz̃, where the infγz̃

is taken over

the set of all the couplings of P
(t)

Y |Z̃=z̃
and P

(0)

Y |Z̃=z̃
. Adding a coordinate while preserving the norm, we have

W1

(
P

(t)

Y |Z̃=z̃
, P

(0)

Y |Z̃=z̃

)
= inf

γz̃

∫
∥(z̃, Y (t))− (z̃, Y (0))∥dγz̃.

Therefore, if we denote p
(t)

Z̃
(z̃)× p(0)

Y |Z̃=z̃
(y) as the new joint density Q

(t)

Z̃,Y
, then we have

E
P

(t)

Z̃

dF1
B
(P

(t)

Y |Z̃ , P
(0)

Y |Z̃) ≤ E
P

(t)

Z̃

W1(P
(t)

Y |Z̃ , P
(0)

Y |Z̃)

=

∫
inf
γz̃

∫
∥(z̃, Y (t))− (z̃, Y (0))∥dγz̃dP (t)

Z̃

≤ inf
π

∫
∥(Z̃, Y )P

(t) − (Z̃, Y )Q
(t)∥dπ

=W1(P
(t)

Z̃,Y
, Q

(t)

Z̃,Y
),

(12)

where (Z̃, Y )P
(t)

and (Z̃, Y )Q
(t)

denote random variables following the distributions P
(t)

Z̃,Y
and Q

(t)

Z̃,Y
, respectively.

The infπ is taken over the set of all couplings of P
(t)

Z̃,Y
and Q

(t)

Z̃,Y
. The infγz̃

is taken over the set of all couplings

of P
(t)

Y |Z̃=z̃
and P

(0)

Y |Z̃=z̃
. Then considering the triangle inequality of distance, we have,

W1(P
(t)

Z̃,Y
, Q

(t)

Z̃,Y
) ≤W1(P

(t)

Z̃,Y
, P

(0)

Z̃,Y
) +W1(P

0)

Z̃,Y
, Q

(t)

Z̃,Y
). (13)

We can expand the second term W1(P
0)

Z̃,Y
, Q

(t)

Z̃,Y
) in dual form,

W1(P
(0)

Z̃,Y
, Q

(t)

Z̃,Y
) = sup

f∈F1

∫ ∫
f(z̃,y)p

(0)

Y |Z̃=z̃
(y)
[
p
(t)

Z̃
(z̃)− p(0)

Z̃
(z̃)
]
dydz̃.

Since Assumption 6 holds, similar to the proof of Lemma 3.2, we also define f2(z̃) :=
∫
f(z̃,y)p

(0)

Y |Z̃=z̃
(y)dy.

Next, we will prove that it is a K-Lipschitz continuous function. Consider ∀z̃1, z̃2, we have

|f2 (z̃1)− f2 (z̃2)| =
∣∣∣∣
∫
f (z̃1,y) p

(0)

Y |Z̃=z̃1
(y)− f (z̃2,y) p

(0)

Y |Z̃=z2
(y)dy

∣∣∣∣

=

∣∣∣∣
∫

[f (z̃1,y)− f (z̃2,y)] p
(0)

Y |Z̃=z̃1
(y) + f (z̃2,y)

[
p
(0)

Y |Z̃=z̃1
(y)− p(0)

Y |Z̃=z̃2
(y)
]
dy

∣∣∣∣

≤
∫
|f (z̃1,y)− f (z̃2,y)| p(0)Y |Z̃=z̃1

(y)dy +W1

(
P

(0)

Y |Z̃=ẑ1
, P

(0)

Y |Z̃=z̃2

)

≤
∫

y

∥z̃1 − z̃2∥1 p
(0)

Y |Z̃=z̃1
(y)dy +W1

(
P

(0)

Y |Z̃=ẑ1
, P

(0)

Y |Z̃=z̃2

)

≤ K ∥z̃1 − z̃2∥1 ,

where the first inequality is an absolute value inequality, the second inequality considers f(z̃,y) ∈ F1 and the

third inequality is based on Assumption 6. Then, we have
f2
K
∈ F1, we finally get,

W1(P
(0)

Z̃,Y
, Q

(t)

Z̃,Y
) ≤ KW1(P

(t)

Z̃
, P

(0)

Z̃
), (14)

where we can combine formula (12)-(14) to complete the proof. □

3.3 An equivalent statement

We hope that functions in the evaluation class F1 are defined on a bounded domain so we can apply existing
neural nets approximation theorems to bound the approximation error E1. It motivates us to first show that



proving the desired convergence rate is equivalent to establishing the same convergence rate but with the domain

restricted function class F1
n :=

{
f |B∞(2 logn) : f ∈ F1

}
as the evaluation class under Assumption 2. Suppose

Assumption 2 holds. By the Markov inequality we have

P (∥(Ẑ, Y )∥ > log n) ≤
E∥(Ẑ, Y )∥I{∥(Ẑ,Y )∥>logn}

log n
= O

(
n−

(log n)δ

r+q / log n

)
, (15)

The bounded Lipschitz distance is defined as

dF1

(
PẐ,Y , PẐ,Ĝ

)
= sup

f∈F1

Ef(Ẑ, Y )− Ef(Ẑ, Ĝ).

The first term above can be decomposed as

Ef(Ẑ, Y ) = Ef(Ẑ, Y )I{∥(Ẑ,Y )∥≤logn} + Ef(Ẑ, Y )I{∥(Ẑ,Y )∥>logn}. (16)

For any f ∈ F1 and a fixed point ∥(ẑ0,y0)∥ < log n, due to the Lipschitzness of f , the second term above
satisfies

∣∣∣Ef(Ẑ, Y )I{∥(Ẑ,Y )∥>logn}
∣∣∣

≤
∣∣∣Ef(Ẑ, Y )I{∥(Ẑ,Y )∥>logn} − Ef (ẑ0,y0) I{∥(Ẑ,Y )∥>logn}

∣∣∣+
∣∣∣Ef (ẑ0,y0) I{∥(Ẑ,Y )∥>logn}

∣∣∣

≤ E
∥∥∥(Ẑ, Y )− (ẑ0,y0)

∥∥∥ I{∥(Ẑ,Y )∥>logn} +BP (∥(Ẑ, Y )∥ > log n)

= O

(
n−

(log n)δ

r+q

)
,

where the second inequality is due to lipschitzness and boundedness of f , and the last inequality is due to
Assumption 2 and formula (15). The second term in formula (16) can be dealt similarly due to Condition (11)
for the network Gθ. Hence, restricting the evaluation class to F1

n will not affect the convergence rate in the main

results, i.e. O
(
n−

1
r+q

)
. Due to this fact, to keep notation simple, we denote F1

n as F1 in the following sections.

3.4 Bounding the error terms

Bounding E1. The discriminator approximation error (4) describes how well the discriminator neural network
class is in the task of approximating functions from the Lipschitz class F1. There has been much recent work on
the approximation power of deep neural networks. The lemma 3.4 is a quantitative and non-asymptotic result
from Shen et al. (2019). When balancing the errors, we can let the discriminator structure be WDHD ≥

√
n and

R = 2 log n so that E1 is of the order n1/(r+q) log n, which is the same order of the statistical errors.

Bound E2. The generator and representation approximation error (8) describes how powerful the generator
class and representation class are in realizing the empirical version of the noise outsourcing lemma and reducing

distributional differences. If we can find ReLU FNNs Gθ0 , Rω0 such that Gθ0

(
η
(t)′
i , Rω0

(
x
(t)′
i

))
= y

(t)′
i for all

t ∈ S ∪ {0}, i ∈ [nt], and Rω0

(
x
(t)′
j

)
= Rω0

(
x
(0)′
i

)
for all t ∈ S, i ∈ [n0], j ∈ S(t)

i where S
(t)
i is a subset of [nt]

and |S(t)
i | are equal to i, then E2 = 0. The existence of such neural networks are guaranteed by the Lemma 3.5,

where the structure of the generator network is to be set as W 2
GHG = c1qn,W

2
RHR = c2rn for some constant

12 < c1, c2 < 384. Note that Lemma 3.5 holds under the condition that the range of Gθ covers the support of PY .
Since we imposed Condition (11), this is not always satisfied. However, Assumption 2 controls the probability
of the bad set where E2 ̸= 0 and we can show that the desired convergence rate is not affected by the bad set.

Bound E3. The statistical error (9) quantifies how close the empirical distribution and the true target are under
bounded Lipschitz distance. The lemma 3.3 is a quantitative and non-asymptotic result form Lu and Lu, (2020).
The finite moment condition is satisfied due to Assumption 1 and E|X|3 =

∫∞
0

3t2P (|X| > t)dt. Recall that
dF1

B
(π̂n, π) ≤ dW1

(π̂n, π), hence we have

EE3 ≾ n−1/(r+q) +
∑

t∈S

(nt/n)n
−1/r
t + n

−1/r
0 .
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Bound E4. Similar to E3, the statistical error (2) describes the distance between the mixture distribution of
(R̂(X), Ĝ) and its empirical distribution. We need to introduce the empirical Rademacher complexity R̂n(F) to
quantify it. Define the empirical Rademacher complexity of function class F as

R̂n(F) := Eϵ sup
f∈F

1

n

n∑

i=1

ϵif
(
Xi, Ĝ

)
,

where ϵ = (ϵ1, . . . , ϵn) are i.i.d. Rademacher variables, i.e. uniform {−1, 1}.

In E4 = supf∈F1
B

{
Ef(Ẑ, Ĝ)− 1

n

∑
t∈S∪{0}

∑nt

i=1 f
(
ẑ
(t)′
i , Ĝ′

)}
, we used the discriminator network Ĝ′, R̂′ ob-

tained from the ghost samples for the empirical distribution. The reason is that symmetrization requires two

distributions being the same. In our settings,
(
R̂(Xi), Ĝ

(
R̂(Xi), ηi

))
and

(
R̂(X ′

i), Ĝ
(
R̂(X ′

i), η
′
i

))
do not have

the same distribution, but
(
R̂(Xi), Ĝ

(
R̂(Xi), ηi

))
and

(
R̂′(X ′

i), Ĝ
′
(
R̂′(X ′

i), η
′
i

))
do. Recall that we have re-

stricted F1
B to B∞(2 log n). Since N (ϵ,F , L∞ (Pn)) ≤ N (ϵ,F , ∥ · ∥∞), now it suffices to bound the covering

number N
(
ϵ, F1

∣∣
B∞(2 logn)

, ∥ · ∥∞
)
. Applying lemmas 3.6, 3.7 and taking δ = C

√
r + qn−1/(r+q) log n for some

constant C > 0, we have

EE4 = O
(
(r + q)1/2n−1/(r+q) log n

)
.

3.5 Proofs of the theorems

In this section, unless specified otherwise, we denote n =
∑

t∈S∪{0} nt. We numbered the theorems according to
the original section sequence.

Theorem 4.1 Suppose Assumptions 2-5 hold. Let (LD, HD) of Dϕ, (LG, HG) of Gθ and (LR, HR) of Rω be
specified such that WDHD = ⌈√n⌉ ,W 2

GHG = c1qn and W 2
RHR = c2rn for some constants 12 ≤ c1, c2 ≤ 384.

We have:
EĜdF1

B

(
PẐ,Ĝ, P

(0)

Ẑ,Y

)
≾ n−1/(r+q) log n+ n

−1/r
0 .

Proof. By taking WDHD = ⌈√n⌉ and R = 2 log n in Lemma 3.4, we get E1 ≾ n−1/(r+q) log n. Lemma

3.5 states that E2 = 0 as long as the range of Gθ covers all the Y ′
i , i.e. max

t∈S∪{0},1≤i≤nt

∥∥∥y(t)′
i

∥∥∥
∞
≤ log n.

Hence the nice set H :=

{
max

t∈S∪{0},1≤i≤nt

∥∥∥(ẑ(t)′
i ,y

(t)′
i )

∥∥∥ ≤ log n

}
is where E2 = 0, and P (Hc) = 1 − P (H) ≤

1 −
(
1− C n

− (log n)δ

r+q

logn

)n

≤ Cn−
(log n)δ

r+q / log n. Also, we have EE3 ≾ n−1/(r+q) +
∑

t∈S(nt/n)n
−1/r
t + n

−1/r
0 and

EE4 ≾ n−
1

r+q log n by Lemma 3.3,3.6 and 3.7, respectively. Therefore, by Lemma 2.1, we have

EdF1
B

(
PẐ,Ĝ, P

(0)

Ẑ,Y

)
≤ EdF1

B

(
PẐ,Ĝ, P

(0)

Ẑ,Y

)
IH + EdF1

B

(
PX,Ĝ, P

(0)
X,Y

)
IHc

≤ (2E1 + E2 + EE3 + EE4 + h) IH + 2BP (Hc)

≾ n−1/(r+q) log n+ 0 +
∑

t∈S

(nt/n)n
−1/r
t + n

−1/r
0 + n−1/(r+q) log n+ h+ n−

(log n)δ

r+q / log n

≾ n−1/(r+q) log n+ n
−1/r
0 .

This completes the proof of Theorem 4.1. □
Theorem 4.2 Suppose that PẐ,Y is supported on [−U,U ]r+q for some U > 0 and Assumptions 3-5 hold. Let

(LD, HD) of Dϕ, (LG, HG) of Gθ and (LR, HR) of Rω be specified such that WDHD = ⌈√n⌉ ,W 2
GHG = c1qn

and W 2
RHR = c2rn for some constants 12 ≤ c1, c2 ≤ 384. Let the output of Gθ be on [−U,U ]q. We have:

EĜdF1
B

(
PẐ,Ĝ, P

(0)

Ẑ,Y

)
≾ n−1/(r+q) + n

−1/r
0 .

Proof. By taking WDLD = ⌈√n⌉ and R = M in Lemma 3.4, we get E1 ≾ n−1/(r+q). Since the range of Gθ

covers all the y
(t)′
i , we have E2 = 0. Also, we have EE3 ≾

∑
t∈S(nt/n)n

−1/r
t + n

−1/r
0 by previous results. Similar



to the procedure for obtaining the convergence rate of EE4, we get EE4 ≾ n−1/(r+q). In all by Lemma 2.1, we
have

EdF1
B

(
PẐ,Ĝ, P

(0)

Ẑ,Y

)
≤ 2E1 + E2 + EE3 + EE4 + h

≾ n−1/(r+q) + 0 +
∑

t∈S

(nt/n)n
−1/r
t + n

−1/r
0 + n−1/(r+q) + h

≾ n−1/(r+q) + n
−1/r
0 .

This completes the proof of Theorem 4.2. □
Theorem 4.3 Under the same conditions of Theorem 4.2, we have

EĜEP
(0)

Ẑ

dF1
B

(
PĜ|Ẑ , P

(0)

Y |Ẑ

)
≾ n−1/(r+q) + n

−1/r
0 .

Proof. By choosing a suitably large B, we can demonstrate that, on the domain [−U,U ]r+q, the distance
dF1

B
(·, ·) is equivalent to the 1 -Wasserstein distance W1(·, ·). By the similar process in Lemma 3.8, we have

E
P

(0)

Ẑ

dF1
B

(
PĜ|Ẑ , P

(0)

Y |Ẑ

)
= E

P
(0)

Ẑ

W1

(
PĜ|Ẑ , P

(0)

Y |Ẑ

)

=

∫
inf
γẑ

∫ ∥∥∥
(
ẑ, Y (t)

)
−
(
ẑ, Y (0)

)∥∥∥ dγẑdP (0)

Ẑ

≤ inf
π

∫ ∥∥∥∥(Ẑ, Y )P
(0)

Ẑ
PĜ|Ẑ − (Ẑ, Y )

P
(0)

Ẑ
P

(0)

Y |Ẑ

∥∥∥∥ dπ

=W1

(
P

(0)

Ẑ
PĜ|Ẑ , P

(0)

Ẑ
P

(0)

Y |Ẑ

)

≤W1

(
P

(0)

Ẑ
PĜ|Ẑ , PẐPĜ|Ẑ

)
+W1(PẐPĜ|Ẑ , P

(0)

Ẑ
P

(0)

Y |Ẑ)

= dF1
B

(
P

(0)

Ẑ
PĜ|Ẑ , PẐPĜ|Ẑ

)
+ dF1

B
(PẐPĜ|Ẑ , P

(0)

Ẑ
P

(0)

Y |Ẑ),

where the infπ is taken over the set of all couplings of P
(0)

Ẑ
PĜ|Ẑ and P

(0)

Ẑ
P

(0)

Y |Ẑ . The infγẑ
is taken over the set of

all couplings of PĜ|Ẑ=ẑ and P
(0)

Y |Ẑ=ẑ
. Recall that we denote the mixture distribution by PẐ , where the domain

index (t) is removed.

Let’s now address dF1
B

(
P

(0)

Ẑ
PĜ|Ẑ , PẐPĜ|Ẑ

)
. Expanding this expression, we arrive at

dF1
B

(
P

(0)

Ẑ
PĜ|Ẑ , PẐPĜ|Ẑ

)
= sup

f∈F1
B

∫ ∫
f(ẑ, Ĝ)pĜ|Ẑ=ẑ(Ĝ)

(
p
(0)

Ẑ
(ẑ)− pẐ(ẑ)

)
dẑdĜ

≤
∫
dF1

B

(
P

(0)

Ẑ
, PẐ

)
pĜ|Ẑ=ẑ(Ĝ)dĜ

≤ dF1
B

(
P

(0)

Ẑ
, PẐ

)
.

By following the proof of Theorem 4.2, we eventually obtain the inequality dF1
B

(
P

(0)

Ẑ
, PẐ

)
≾
∑

t∈S(nt/n)n
−1/r
t +

n
−1/r
0 , which is of the same order as certain terms in EĜdF1

B
(PẐPĜ|Ẑ , P

(0)

Ẑ
P

(0)

Y |Ẑ). The latter corresponds to the

upper bound proposed in Theorem 4.2.

This completes the proof of Theorem 4.3. □
Theorem 5.1 Suppose that PZ̃,Y is supported on [−U,U ]r+q for some U > 0 and Assumptions 1, 5-6 hold for Z̃.

Let (WD̃, HD̃) of Dϕ̃, (WG̃, HG̃) of Gθ̃ and (WR̃, HR̃) of Rω̃ be specified such thatWD̃HD̃ = ⌈√n⌉ ,W 2
G̃
HG̃ = c1qn

and W 2
R̃
HR̃ = c2rn for some constants 12 ≤ c1, c2 ≤ 384, where n =

∑
t∈[T ]∪{0} nt. Let the output of Gθ̃ be on

[−U,U ]q and selection threshold C
(
max

{
n−1/(r+q), n

−1/r
0

})
= h, we have:

P (Ŝ = S)→ 1.
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where it equcals to P (∀t ∈ Ŝ ←→ the t-th source domain hold Assumption 4)→ 1.

Proof. By Lemma 3.3, 3.5 and 3.8, ∀t ∈ Ŝ, we have,

E
P

(t)

Z̃

dF1
B

(
P

(t)

Y |Z̃ , P
(0)

Y |Z̃

)
≤W1

(
P

(t)

Z̃,Y
, P

(0)

Z̃,Y

)
+KW1

(
P

(t)

Z̃
, P

(0)

Z̃

)

≤W1

(
Pnt

Z̃,Y
, Pn0

Z̃,Y

)
+W1

(
P

(t)

Z̃,Y
, Pnt

Z̃,Y

)
+W1

(
P

(0)

Z̃,Y
, Pn0

Z̃,Y

)

+KW1

(
Pnt

Z̃
, Pn0

Z̃

)
+KW1

(
P

(t)

Z̃
, Pnt

Z̃

)
+KW1

(
P

(0)

Z̃
, Pn0

Z̃

)

≾h+ n
−1/(r+q)
t + n

−1/(r+q)
0 + 0 + n

−1/r
t + n

−1/r
0 → h,

(17)

where the first inequality follows from Lemma 3.8, and the second inequality is straightforward. Similarly, by the
process used to bound E2, we also have W1(P

nt

Z̃
, Pn0

Z̃
) = 0. Thus, the remainder of the third inequality follows

from Lemma 3.3. Hence, we have P (Ŝ ⊂ S)→ 1.

Moreover, since PZ̃,Y is supported on [−U,U ]r+q for some U > 0, when B is sufficiently large, we have dF1
B
(·, ·) =

dF1(·, ·) =W1(·, ·). Therefore, by Lemma 3.2, 3.3 and 3.5, for all t ∈ S, we have,

W1

(
Pnt

Z̃,Y
, Pn0

Z̃,Y

)
≤W1

(
P

(t)

Z̃,Y
, P

(0)

Z̃,Y

)
+W1

(
P

(t)

Z̃,Y
, Pnt

Z̃,Y

)
+W1

(
P

(0)

Z̃,Y
, Pn0

Z̃,Y

)

= dF1
B

(
P

(t)

Z̃,Y
, P

(0)

Z̃,Y

)
+W1

(
P

(t)

Z̃,Y
, Pnt

Z̃,Y

)
+W1

(
P

(0)

Z̃,Y
, Pn0

Z̃,Y

)

≤ E
P

(t)

Z̃

dF1
B

(
P

(t)

Y |Z̃ , P
(0)

Y |Z̃

)
+KdF1

B

(
P

(t)

Z̃
, P

(0)

Z̃

)
+W1

(
P

(t)

Z̃,Y
, Pnt

Z̃,Y

)
+W1

(
P

(0)

Z̃,Y
, Pn0

Z̃,Y

)

≾ h+ 0 + n
−1/(r+q)
t + n

−1/(r+q)
0 → h,

where the second inequality follows from Lemma 3.2, and the remainder is similar to formula (17). If Assumption
4 holds for the representation Z̃, then we also consider Assumption 4 to hold for the re-trained Ẑ after selection,
since the training of Ẑ excludes outlier source domains. Thus, we have P (S ⊂ Ŝ)→ 1.

This completes the proof of Theorem 5.1. □
Theorem 5.2 Suppose that PZ̃,Y , PẐ,Y is supported on [−U,U ]r+q for some U > 0 and Assumptions 1, 3-6 hold.

Let (WD̃, HD̃) of Dϕ̃, (WG̃, HG̃) of Gθ̃ and (WR̃, HR̃) of Rω̃ be specified such thatWD̃HD̃ = ⌈√n⌉ ,W 2
G̃
HG̃ = c1qn

and W 2
R̃
HR̃ = c2rn for some constants 12 ≤ c1, c2 ≤ 384, where n =

∑
t∈[T ]∪{0} nt. Let the output of Gθ̃ be on

[−U,U ]q and selection threshold C
(
max

{
n−1/(r+q), n

−1/r
0

})
= h, we have:

EĜEP
(0)

Ẑ

dF1
B

(
PĜ|Ẑ , P

(0)

Y |Ẑ

)
≾ n−1/(r+q) + n

−1/(r+q)
0 .

Proof. Combining Theorem 4.3 and the formula (17) in Theorem 5.1, the proof of this theorem is straightfor-
ward. □
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